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Abstract  
This paper presents a systematic review of intrusion detection systems (IDS) that leverage federated learning (FL) to 

enhance privacy in distributed cybersecurity environments. A total of 78 peer-reviewed studies published between 2019 and 

2024 were selected using PRISMA guidelines. We categorize FL-based IDS solutions based on architecture (centralized, 

decentralized, hierarchical), aggregation methods (e.g., FedAvg, DAFL), and privacy-preserving techniques (e.g., 

differential privacy, homomorphic encryption). The survey also examines solutions to key challenges such as 

communication overhead, data heterogeneity, and poisoning attacks. Furthermore, this study outlines unresolved issues and 

proposes future research directions, including adaptive federated optimization and cross-domain deployments. This review 

serves as a valuable resource for researchers and practitioners aiming to develop privacy-aware, scalable, and intelligent 

IDS using federated learning. 
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1- Introduction 

Cybersecurity threats continue to grow in complexity and 

scale, posing significant risks to individuals, organizations, 

and critical infrastructure. Intrusion Detection Systems 

(IDS) play a vital role in identifying unauthorized 

activities and protecting digital assets. While machine 

learning (ML)-based IDSs have improved detection 

accuracy, most rely on centralized architectures that 

require aggregating raw data from multiple sources raising 

serious privacy concerns. Regulatory frameworks such as 

GDPR and HIPAA further restrict data sharing across 

entities. As a result, there is an urgent need for privacy-

preserving IDS solutions that can operate effectively 

across distributed environments without exposing sensitive 

data.  

Cybersecurity threats are a most important problem in 

today's world, which is becoming more digital and 

interrelated by the day. They pose a threat not only to 

individual privacy but also to the working constancy of 

industries and national infrastructure. Networked system 

vulnerabilities are often used by malicious actors to get 

illegal access, bargain confidential data, hinder services, or 

expose data integrity [1]. These risks encompass a wide 

variety of attacks, such as ransomware, phishing, denial-

of-service (DoS), zero-day exploits, and Advanced 

Persistent Threats (APTs). Thus, it is more significant than 

ever to have defense mechanisms that are both smart and 

active. By continuously seeing system behavior, network 

traffic, and user actions, intrusion detection systems (IDS) 

play a vital part in the defense ecosystem by catching 

infrequent or doubtful patterns that could point to cyber 

intrusions [2][3]. IDS must progress to become more 

accurate, flexible, and proactive in present threat detection 

while reducing false positives and assuring system 

scalability, seeing the dynamic character of cyberattacks 

and their growing complexity.  

Traditional IDS technologies have advanced, especially 

those that use deep learning (DL) and machine learning 

(ML) for anomaly detection, but there are still a number of 

noteworthy matters that necessitate being addressed. The 

centralized architectures used by the mainstream of ML-
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based IDS methods combine raw data from several 

terminations into a single server for training and valuation. 

However, this pattern presents thoughtful risks to data 

privacy because it may expose private user data during 

transmission or storage, including IP logs, user IDs, 

medical histories, or personal behavioural patterns [4][5]. 

Administrations are also regularly unable or grudging to 

share data outside of their locations due to ethical, lawful, 

and regulatory restrictions like GDPR, HIPAA, and data 

authority laws. This leads to disjointed datasets with little 

variety, which makes it harder to detect attacks in real-

world surroundings and causes biased learning and poor 

generalization [6]. Strong intrusion detection model 

training is additionally difficult due to class inequality, 

data sparsity, non-IID (non-independent and identically 

distributed) data distributions, and altering attack 

signatures. Structuring a safe, supportive, and scalable IDS 

therefore needs tackling these privacy and data distribution 

problems. 

Federated Learning (FL), which protects user privacy 

while taking the disadvantages of centralized learning, has 

become a game-changer. Without sharing raw data, it 

allows numerous clients like distributed organizations, 

edge nodes, or IoT devices to work together to train a 

common global model [7][8]. Private data is kept local and 

secure because only model updates such as weights or 

inclines are sent. IDS applications, where privacy and 

security are vital, are preferably right for this distributed 

learning framework. FL is extremely applicable to 

businesses like finance, healthcare, perilous infrastructure, 

and smart cities because it permits administrations to gain 

from shared knowledge and model development without 

exposing sensitive data [9][10][11]. Additionally, new 

progress in FL includes privacy-enhancing skills such as 

secure multiparty computation (SMC), homomorphic 

encryption, blockchain-based authentication, and 

differential privacy [12][13]. These protections raise 

confidence, lower the possibility of privacy destruction, 

and promise robust protection against aggressive 

movements like model inversion and data poisoning. FL 

thus encourages a cooperative cybersecurity ecosystem in 

addition to addressing the disadvantages of data sharing 

[14][15]. 

Even though there is a rising amount of study on the use of 

FL in IDS, there are still a number of noteworthy gaps. A 

detailed framework for comparing FL-IDS models across 

significant sizes, including model aggregation strategies 

(e.g., FedAvg, FedProx, DAFL), privacy-preserving 

techniques (e.g., differential privacy, SMC), system 

architectures (e.g., centralized vs. hierarchical FL), and 

practical deployment circumstances, is missing in many 

formerly published works that focus on developing 

particular FL algorithms or privacy techniques [16][17]. 

Moreover, the mainstream of study disregards the trade-

offs between accuracy, latency, communication overhead, 

and resource consumption, all of which are dangerous for 

applying FL in surroundings with partial resources, like 

edge networks and the Internet of Things [18][19]. It is 

also challenging for experts and investigators to accept or 

enlarge upon current solutions due to the lack of 

discussion surrounding benchmark datasets, performance 

evaluation metrics, and scalability across various domains. 

An embattled, inclusive, and prepared investigation of FL 

precisely within the IDS domain is lacking, despite the fact 

that previous reviews have examined FL and IDS 

autonomously [20]. By presenting a thorough literature 

review that highlights problems, classifies approaches, and 

proposes future research paths, this work fills that 

knowledge gap. 

FL is a machine learning method that enables the 

development of models across decentralized edge 

computers or servers holding local data samples without 

requiring data exchange. This paradigm for collaborative 

learning is especially pertinent when discussing privacy 

issues with intrusion detection systems (IDS). For efficient 

training and pattern recognition, traditional intrusion 

detection systems frequently need access to private and 

sensitive data. However, there are serious privacy concerns 

associated with gathering and centralizing such data. FL 

offers a promising solution by allowing ML models to be 

trained on distributed data without requiring central data 

sharing. 

This paper's major goal is to offer a wide and systematic 

overview of the state-of-the-art in Federated Learning for 

Intrusion Detection Systems (FL-IDS) from 2019 to 2024. 

Using prearranged presence and elimination criteria, 78 

peer-reviewed articles in all were selected from reputable 

digital libraries, including IEEE Xplore, ACM Digital 

Library, ScienceDirect, and SpringerLink. 

The following are the contributions made by this survey: 

• System architecture, combination plans, privacy 

mechanisms, and application areas (such as IoT, 

IIoT, 5G, and healthcare) are used to classify FL-

IDS methods. 

• It examines methods for refining privacy, such as 

adversarial defense, differential privacy, and 

secure aggregation. 

• It highlights significant problems and restrictions 

like federated poisoning attacks, data 

heterogeneity, and communication overhead. 

• With an emphasis on edge computing, cross-

domain transfer, adaptive FL models, and real-

time IDS deployment, it gives a research roadmap 

and future directions. 

This paper's residual segments are arranged as follows: 

The paper is resolved with final perceptions and practical 

implications in Section 6. Section 4 deliberates significant 

open challenges; Section 5 summarizes future research 

directions; Section 3 analyses and classifies existing FL-
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IDS methods; and Section 2 presents the basic ideas of 

IDS and FL and highlights privacy challenges. 

 

2- Foundations and Literature Overview 

FL entails cooperatively updating models across 

decentralized devices. Let's represent the key components, 

Global Model parameters θ and Local model parameters 

for device 𝑖  is 𝜃𝑖  The global objective function F(θ) is 

typically defined as the average of local objective 

functions across all devices: 

𝐹(𝜃) =
1

𝑛
∑ 𝑓(𝜃𝑖)𝑛 

𝑖=0     (1) 

Here n is the overall quantity of devices, 𝑓(𝜃𝑖)  shows 

local objective function for device 𝒊 At each iteration, each 

device 𝒊 computes a local update Δθi by minimizing its 

local objective function as 

∆𝜃𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∆𝜃 𝑓𝑖(𝜃𝑖 + ∆𝜃𝑖)                     (2) 

The local model updates ∆𝜃𝑖 subsequently communicated 

to a centralized server for compilation and global models 

updated by aggregating the local updates as, 

𝜃 ←
1

𝑛
∑ (𝜃𝑖 +∆𝑛

𝑖=1 𝜃𝑖)                  (3) 

The process of local updates, communication, and 

aggregation is repeated for multiple iterations or until 

convergence. 

Federated Learning (FL), which redefines the conventional 

data-centric techniques, emerges as a promising paradigm 

that addresses these issues and changes the intrusion 

detection landscape [21]. In federated learning, businesses, 

manufacturers, or devices that interact with data are 

considered clients, and each client's data privacy is 

preserved [22]. Clients build identical deep local models 

and train them with their own datasets. On the cloud center 

server, create a global depth model with the same 

framework as the local model [23]. Through constant 

communication between the training's central server and 

several clients, the global and local models are transferred 

as shown in figure1. In order to accomplish particular 

learning tasks, a global depth model with outstanding 

performance is ultimately jointly established. The two 

primary stages of a federated learning scenario are local 

update and global aggregation, to put it briefly [24]. This 

illustrates how clients can share and profit from each 

other's data through FL without having to send private 

information to a central server. Federated Learning, with 

its decentralized model training paradigm, provides a 

novel solution that prioritizes protecting sensitive user data 

privacy while simultaneously improving intrusion 

detection models' accuracy and efficiency. In this 

extensive analysis, we examine the complementary nature 

of FL and IDS, delving into the subtleties of this 

innovative technology and its revolutionary effects on 

cybersecurity privacy protection [25][26]. 

The purpose of this survey is to present an in-depth study 

of the difficulties posed by centralized intrusion detection 

systems (IDS) models, highlighting the privacy 

implications that are now a major topic in the discussion of 

network security [27][28]. By keeping aim to clarify how 

this decentralized learning paradigm minimizes privacy 

concerns while preserving intrusion detection 

effectiveness by delving into the core ideas of federated 

learning [29][30]. This paper a look into the future where 

the combination of decentralized machine learning and 

cybersecurity strengthens digital defences and upholds the 

fundamental right to privacy in an increasingly connected 

world as we navigate the complexities of Federated 

Learning for enhanced privacy in Intrusion Detection 

Systems [31]. This is a journey that goes beyond 

traditional boundaries.  

 

Fig1: Federated Learning System in Generalized Format 

Table-1 provides a summary of the definitions of the 

abbreviations used in the paper in order to aid with 

comprehension. 

Table 1: Common abbreviations listed with explanations 

Acronym  Definition 

FL Federated Learning 

IDS Intrusion Detection Systems 

NIDS Network Intrusion Detection systems 

DAFL Dynamic Weighted Aggregation Federated 
Learning 

FPR False Positive Rates  

TPR True Positive Rates 
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IOT  Internet of Things 

DAFL Dynamic Weighted Aggregation Federated 
Learning 

SMC Secure Multiparty Computation  

ACGAN Auxiliary Classifier Generative Adversarial 
Networks  

2-1- Federated Learning (FL) Applications in 

Cyber Security 

FL has garnered significant interest in the field of 

cybersecurity, particularly in relation to intrusion detection 

systems (IDS). FL allows collaborative learning while 

preserving data confidentiality and locality. In order to 

prevent data privacy violations, a novel architecture 

known as Decentralized and Online Federated Learning 

Intrusion Detection (DOF-ID) has been proposed. This 

architecture enables each intrusion detection system to 

learn from expertise obtained in other systems [32]. An 

alternative method is the DAFL scheme, which better 

detects intrusions with less communication overhead by 

implementing adaptive selection and balancing strategies 

for local models. [33]. In this regard, FL has great promise, 

as demonstrated by Campos [34] and Ferrag [35], who 

particularly point out that FL is more accurate and private 

than non-federated learning. Alazab [36] highlights the 

technology's potential for real-time cybersecurity by 

offering a thorough overview of FL models for 

authentication, privacy, trust management, and attack 

detection. A hybrid ensemble approach for FL-based IDS 

in IoT security is presented by Chatterjee [37], which 

achieves low FPR and high TPR on both clean and noisy 

data. 

2-2- Privacy-Enhancing Techniques in FL-IDS 

According to Ruzafa-Alcazar's [38] evaluation of 

differential privacy techniques, using Fed+ yields result 

that are comparable to those of non-privacy-preserving 

techniques. But it does not provide a comprehensive 

analysis of the communication and computational 

overhead associated with the application of such 

techniques in resource-constrained IIoT scenarios. When 

Ansam Khraisat [39] evaluates Federated Learning against 

conventional deep learning models, Federated Learning 

outperforms the latter in terms of accuracy and loss, 

especially in situations where data security and privacy are 

prioritized. Federated mimic learning, a novel approach 

put forth by Al-Marri [40], mixes mimic learning and 

federated learning to produce a distributed intrusion 

detection system that poses the least risk to users' privacy 

but this research has several shortcomings: it does not 

examine potential vulnerabilities, does not compare the 

suggested solution with other privacy-preserving methods, 

and raises scalability issues. It also does not address 

computational and communication overhead. In 2020, 

Yang presents privacy-preserving protocols that use 

cryptographic techniques to safeguard participant 

parameter data in Federated Learning [41]. To safeguard 

identity privacy, a lightweight linkable ring signature 

scheme is suggested in [42]. 

Among the multiple techniques, one technique is to 

securely compute patient-level similarity scores amongst 

hospitals using Secure Multiparty Computation (SMC), 

which allows patient clustering without sharing patient-

level data [43]. In order to ensure privacy guarantees, the 

Federated Learning framework incorporates differential 

privacy (DP), which involves adding calibrated noises. 

This approach has been applied to the Federated 

Averaging algorithm, resulting in the ULQ-DP-FedAvg 

[44]. Additionally, the Fed+ aggregation function 

produced comparable results even with the addition of 

noise to the federated training process when differential 

privacy techniques were evaluated for training a FL-

enabled IDS for industrial IoT [45]. These methods seek to 

protect sensitive data in Federated Learning for IDS while 

solving issues related to privacy. 

The effectiveness of FL in IDS has been evaluated taking 

into account data heterogeneity, non-independent and 

identically distributed (non-IID) data, and data privacy 

concerns. One study found that non-IID data had an 

impact on FL performance and proposed a FL data 

rebalancing method based on ACGAN [46]. An additional 

study evaluated the effectiveness of FL IDS solutions with 

respect to deep neural networks (DNNs) and deep belief 

networks (DBNs) using a realistic dataset of IoT network 

traffic. In order to lessen the effects of data heterogeneity, 

they investigated pre-training and different aggregation 

techniques [47]. An MCDM framework was also 

developed in order to standardize and benchmark ML-

based IDSs utilized in FL structure for IoT app 

development. The framework included standardizing 

assessment criteria, developing an evaluation decision 

matrix, benchmarking, and using MCDM techniques to 

select the best IDSs. [48]. 

The application of Hierarchical Federated Learning (HFL) 

and Federated Averaging (FedAvg) to enhance the speed 

and precision of Intrusion Detection Systems (IDS) in 

Internet of Things applications is highlighted by Saadat 

[49] and Lazzarini [50]. However, Federated Adaptive 

Gradient Methods (Federated AGMs) are presented by 

Tong [51] as a possible advancement over current 

techniques, especially when handling non-IID and 

unbalanced data. More emphasis is placed on the necessity 

of ongoing study and analysis of various approaches in 

practical settings by Campos [52], particularly in the 

framework of IoT. Furthermore, distinct data rebalancing 

strategies and aggregation techniques, like auxiliary 

classifier generative adversarial networks (ACGAN), can 

lessen the detrimental effects of non-IID data on FL. To 
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deal with the heterogeneity of data, models, and 

computation, Full Heterogeneous Federated Learning 

(FHFL) creates synthetic data, aggregates models using 

knowledge distillation, and makes use of idle computing 

resources [53]. These approaches allow for cooperative 

model training in FL for IDS while maintaining privacy 

protection. Table-2 lists the different datasets that have 

been used in previous research. 

Table-2 The data sets used in related research 

Datasets 

NSL-KDD dataset: 125,973 training records, 22,544 test 
records, used for network intrusion detection 

ToN_IoT dataset: 83 features, 4,404,084 samples 
 

NSL-KDD dataset 
 

NSL-KDD dataset for Federated Learning in IoT intrusion 
detection evaluation. 

MNIST and UCI Human Activity Recognition Dataset 
 

Bot-IoT dataset, the MQTTset dataset, and the TON_IoT 
dataset 

In terms of reliability, effectiveness, and adaptability, 

federated learning (FL) has shown promising results for 

intrusion detection system (IDS) applications. Without 

distributing the raw data, FL allows for ML/DL models to 

be trained on network traffic data gathered from several 

edge devices [54]. Internet of Medical Things (IoMTs) and 

tactical military environments simply a few of the domains 

where FL has been successfully applied [55][56]. With 

accuracy rates exceeding 93%, FL has demonstrated high 

model performance in identifying malicious activity. By 

using federated training of local device data, FL further 

guarantees data security and privacy while maintaining 

privacy and improving the model as a whole. Further 

demonstrating FL's efficiency is the fact that it achieves 

good detection performance with little network 

communication overhead. Marulli [57] underscored the 

significance of efficiency and effectiveness in Federated 

Learning (FL). Specifically, she stressed the need for 

accurate federated algorithm tuning and evaluated the 

trade-offs between accuracy decay and latency in a 

decentralized learning approach. These results demonstrate 

FL's potential as a useful strategy for intrusion detection 

systems (IDS) applications, providing precise 

identification, effective communication, and scalability in 

a variety of network environments. All of these studies 

highlight FL's potential in IDS applications, but they also 

point to the need for more research to maximize FL's 

effectiveness.  

2-3- Compare FL-IDS with traditional centralized 

IDS models  

This paper compares traditional centralized IDS models 

with FL-IDS, a decentralized framework for federated 

learning (FL) with authentication and verification. FL-IDS 

uses blockchain technology to manage identities 

dynamically and stops unauthorized parties from initiating 

poisoning attacks [58]. It permits local devices to confirm 

the received global model and guarantees that only 

authorized local devices can add updates to the blockchain. 

Traditional centralized IDS models, on the other hand, are 

vulnerable to single points of failure because they depend 

on centralized servers. FL-IDS provides decentralization, 

non-tampering, and non-counterfeiting benefits by 

substituting blockchain technology for the centralized 

server in order to address this problem [59]. Furthermore, 

compared to conventional algorithms, FL-IDS is 

demonstrated to be more communication-efficient and 

resilient against malevolent nodes [60]. Together, these 

studies highlight FL's potential to improve IDS privacy 

and performance in cybersecurity. Table 3 shows the 

comparison of FL vs Centralized IDS. 

 
Table-3 Comparison Table: FL vs Centralized IDS 

Feature Traditional 

Centralized IDS 

FL-based IDS 

Data Sharing Requires sending 
raw data to server 

Only model 
updates shared 

Privacy Low (data exposure 
risk) 

High (local data 
stays private) 

Scalability Moderate High (edge-device 
friendly) 

Resilience Vulnerable to 
single point failure 

Decentralized and 
more robust 

Communication 
Cost 

Low (single server) High (needs 
efficient 

compression) 
Security Central server is 

target 
Can include secure 

aggregation 

 

Table 4 summarizes key federated learning approaches 

applied in IDS research between 2020 and 2024, 

highlighting their contributions and limitations. 

 
Table-4 Comparative Summary of Federated Learning-Based IDS 

Approaches 

Ref 

 

Year Methodology & 

Advantages 

Drawbacks 

[33] 2023 DAFL - Adaptive 
model selection to 

reduce 
communication 

Needs 
optimization for 

real-time IoT 
scenarios 

[36] 2022 Overview of FL in 
IDS for privacy & 
trust management 

Lacks model-
specific 

evaluation 

[38] 2023 Fed+ using DP for 
IIoT with 

comparable results 
to non-FL 

Overhead not 
discussed for low-
resource settings 

[40] 2020 Federated mimic 
learning for 

distributed IDS 

Limited 
scalability, lacks 
comparison with 
other techniques 

[46] 2023 Data rebalancing 
using ACGAN to 

handle non-IID data 

Increased model 
complexity 
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3- Methodology 

3-1- Search period and rationale for the 2024 

cutoff  

The review covers studies published from January 2019 up 

to March 2024. The cutoff date (March 2024) reflects the 

date when the systematic search and data extraction 

pipeline were executed. This ensures consistency and 

reproducibility. We explicitly note that newer works 

published after March 2024 are not included but may be 

incorporated in a future update. 

3-2- Databases and justification 

We selected IEEE Xplore, ACM Digital Library, 

SpringerLink, ScienceDirect, and arXiv as the primary 

sources. These were chosen due to their wide coverage of 

peer-reviewed ML and cybersecurity research and 

inclusion of both published and preprint works. 

3-3- PRISMA Diagram 

The PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) rules helped as the 

motivation for this survey's systematic method, which 

guarantees thorough exposure, reproducibility, and 

transparency. The review focused on the study that 

addressed Federated Learning (FL) in the context of 

Intrusion Detection Systems (IDS) and was published 

between January 2019 and March 2024. It paid specific 

attention to model presentation and privacy-preserving 

procedures. A planned search was carried out across five 

main academic databases, like ACM Digital Library, IEEE 

Xplore, SpringerLink, ScienceDirect, and arXiv, to collect 

relevant works. The search terms (e.g., "Federated 

Learning" OR "FL") AND ("Intrusion Detection System" 

OR "IDS") AND ("privacy" OR "cybersecurity" OR "non-

IID" OR "aggregation") are collective keywords and 

Boolean operators. The 148 papers that were reimbursed 

by the original search were riddled and divided into three 

steps: (1) full-text review, (2) abstract showing, and (3) 

duplicate removal. Following the application of the 

exclusion criteria (non-English, editorial/commentary 

papers, or general ML unrelated to IDS) and inclusion 

criteria (peer-reviewed, focused on FL-IDS, practical 

relevance, and investigational detail), 78 studies in total 

were selected for additional investigation. The 

identification, showing, suitability, and insertion phases of 

the selection process were defined in a PRISMA flow 

diagram. A PRISMA flow diagram illustrating the review 

process has been included in the revised version as Figure 

2. 

 
 

Fig2. PRISMA Flow Diagram 

3-4- Screening and CASP checklist and Parisa 

code explanation 

Screening was performed by two independent reviewers, 

with discrepancies resolved by a third adjudicator. Both 

reviewers applied the CASP checklist to assess study 

quality. 78 studies met inclusion criteria, each satisfying at 

least 5 of the 7 CASP key items. A coding context 

covering publication details, FL architecture (centralized, 

hierarchical, decentralized), privacy-enhancing methods 

(e.g., secure multiparty computation, blockchain 

integration, differential privacy), aggregation strategies 

(e.g., FedAvg, DAFL, FedCME), datasets used (e.g., NSL-

KDD, ToN-IoT, CSE-CIC-IDS2018), and performance 

metrics (accuracy, precision, recall, FPR, TPR) was used 

to thoroughly extract data from the selected revisions. To 

find tendencies, technical progressions, practical uses, and 

research gaps, the studies were assembled and studied 

thematically. An improved form of the CASP (Critical 

Appraisal Skills Programme) list was used to measure the 

objective clarity, experimental consistency, significance of 

results, transparency of procedure, and discussion of 
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limitations to regulate the reliability and procedural 

consistency of the included works. Articles were only 

involved if they pleased a minimum quality standard in 

each of these extents. This systematic and detailed method 

guarantees that the survey delivers a reliable and insightful 

summary of the varying arena of FL-based intrusion 

detection systems. The CASP checklist template and 

scoring thresholds used in this study are provided in 

Appendix B. 

Parisa v1.0 is a Python-based automation script used to 

standardize the search and extraction process across 

databases. It uses libraries such as requests, pandas, and 

pyPDF2 to automate query execution and deduplication. 

All inclusion/exclusion decisions were made by human 

reviewers. The Parisa repository can be shared upon 

request.  

4- Findings  

4-1- Communication Overhead 

The transmission of model parameters in every round of 

FL-based methods results in high communication costs 

that can impede their actual deployment and pose security 

risks [61]. Additionally, FL training is negatively impacted 

by the large model size and equally dispersed private data, 

particularly in distillation-based FL [62]. In order to tackle 

these difficulties, scholars have suggested techniques like 

semisupervised FL through knowledge distillation and 

DAFL. To enhance detection performance and minimize 

communication overhead, these techniques make use of 

unlabelled data, adaptive filtering and balancing strategies 

for local models, and optimized deep neural networks [63]. 

Based on experimental results, these methods are effective 

in improving detection performance while requiring less 

communication overhead. 

4-2- Heterogeneity 

Heterogeneity presents challenges for federated learning 

(FL) in intrusion detection systems. The heterogeneity of 

data in FL can lead to slower convergence speed, affecting 

model performance [64]. The training of FL models may 

also be hampered by non-IID data, which is frequently 

found in IoT systems [65]. Many methods have been 

suggested to deal with these issues. One method is to train 

local models with non-IID data using instance-based 

transfer learning [66]. An alternative strategy for reducing 

the effects of data heterogeneity is to make use of pre-

training and investigate various aggregation techniques 

[67]. 

4-3- Federated Poisoning Attacks 

Federated poisoning attacks pose a challenge in FL for 

IDS. Federated architectures work better because of the 

distributed nature of data found in client edge devices. 

Although this property protects the privacy of the data 

while it's in transit and keeps it from being gathered in one 

location, the data in question is still at risk. The labels of 

the data can be readily changed on a client's device. We 

refer to these attacks as poisoning attacks. These attacks 

compromise the global model's accuracy and privacy by 

having malevolent actors alter training data or model 

updates. In order to address this issue, several papers 

suggest defence mechanisms against poisoning attacks. 

Wang et al. propose a PAPI-attack that exploits distinctive 

capacity in cyclical model updates to infer sensitive 

information [68]. Yan et al. introduce a CLP-aware 

defence against poisoning of federated learning (DeFL) 

that detects malicious clients and identifies critical 

learning periods to guide the removal of detected attackers 

[69]. To stop data poisoning attacks, Ovi et al. provide a 

confident federated learning framework that verifies label 

quality and removes incorrectly labelled samples from 

local training [70]. 

Addressing these challenges requires a combination of 

algorithmic advancements, technological solutions, and 

robust privacy-preserving mechanisms. Ongoing research 

and development efforts are focused on overcoming these 

obstacles and improving the practicality of Federated 

Learning in various applications. 

4-4- Future Directions 

Federated learning is a vibrant and developing field of 

study. There are still many important new areas that need 

to be investigated, even though recent work has started to 

address the issues covered in Section of challenges. We 

briefly discuss a few promising research directions in the 

context of privacy-centric intrusion detection systems. 

Future directions entail investigating and addressing 

emerging challenges, integrating cutting-edge technologies, 

and improving the useful applicability of federated 

learning. Future directions that could be pursued are as 

follows: 

Effective Model Transfer and Compression: 

In order to minimize communication overhead in federated 

learning, investigate methods for effective model 

compression and transfer. Given the complexity and 

heterogeneity of network traffic generated by distributed 

networks such as wearables, mobile phones, and 

autonomous vehicles, privacy-preserving decentralized 

learning techniques like federated learning (FL) have 

become essential. In order to train a model collaboratively 
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across multiple institutions without requiring local data 

sharing, FL ensures both privacy and security. 

Unfortunately, domain feature shift brought on by various 

acquisition devices or clients can impair the performance 

of FL models. In response, a brand-new trusted federated 

disentangling network known as TrFedDis has been put 

forth. It makes use of feature disentangling to preserve 

local client-specific feature learning and capture global 

domain-invariant cross-client representation on the one 

hand. [71].  

Flexible and Adaptive Federated Learning: 

Create flexible and dynamic federated learning 

frameworks that can adapt to evolving intrusion patterns 

and network conditions. This could entail developing self-

learning models that can adjust on their own to changing 

network topologies and novel forms of attacks. Large 

training iterations, a lack of adaptivity, and non-IID data 

distribution are just a few of the difficulties encountered in 

federated learning that have been brought to light by 

existing research in this field. Several papers propose 

adaptive algorithms that address these challenges and 

provide theoretical guarantees for convergence and 

improved performance. For example, Kim et al. 

propose ∆-SGD a step size rule for stochastic gradient 

descent (SGD) that enables each client to use its own step 

size based on the local smoothness of the function being 

optimized [72]. Furthermore, a dynamic adaptive cluster 

federated learning scheme is put forth to handle changes in 

real-time data distribution and offer flexibility in cluster 

partitioning [73]. These approaches demonstrate the 

importance of flexibility and adaptivity in FL-IDS. 

FL’s Encryption Standards: 

In order to further improve the protection of sensitive data 

during the federated learning process, research and put 

into practice advanced privacy-preserving mechanisms 

like homomorphic encryption, which encrypts local 

gradients or model updates before they are shared with the 

centralized server [74], safe multi-party calculations [75], 

and separate privacy.  

Cross-Domain Federated Learning: 

Extend research into cross-domain federated learning, 

where models trained in one domain can be applied to 

enhance intrusion detection in a different domain. This 

methodology has been implemented across multiple fields, 

such as 2D surgical image segmentation [76] and 

knowledge graph embedding [77]. Regarding surgical 

image segmentation, the technique tackles issues of data 

scarcity, privacy safeguarding, and domain shifts between 

various canters. The method improves the embedding of 

various clients in knowledge graph embedding by 

facilitating safe interaction between domains without 

requiring data sharing. 

Edge Computing in FL based IDS: 

Federated learning is incorporating edge computing for 

intrusion detection systems (IDS). This method shifts 

model aggregation to edge servers in order to preserve 

data privacy and enhance federated learning performance. 

[78]. In C-V2X networks, edge computing has greatly 

improved Intrusion Detection System (IDS) performance, 

especially when paired with Federated Learning [79]. 

Resource-efficient FL techniques, such as knowledge 

distillation and model compression, have been investigated 

within the framework of mobile edge computing in order 

to meet the demanding resource requirements of mobile 

clients [80]. 

By exploring these research methods, the field of FL-IDS 

can progress toward intrusion detection systems that are 

more resilient, flexible, and privacy-preserving, and that 

are better suited to handle the changing demands of 

cybersecurity.  

5- Results and Synthesis 

This section précises the main conclusions drawn from a 

detailed investigation of 70 chosen papers on Federated 

Learning (FL) for Intrusion Detection Systems (IDS). The 

consequences are prepared into two main themes: (1) the 

state of FL-IDS architectures and privacy policies at the 

moment, (2) remarkable model contributions like 

TrFedDis. 

5-1- Summary of Trends in FL-Based IDS 

Research 

According to the analysis, decentralized and privacy-

preserving IDS designs driven by FL are becoming more 

and more common, particularly in the IoT, IIoT, and 

healthcare environments. FedAvg is still the most popular 

aggregation method, with FedProx, DAFL, and FedCME 

succeeding thoroughly behind. Each of these methods 

handles a diverse set of matters, such as communication 

bottlenecks and client heterogeneity. Differential privacy, 

secure multiparty computation (SMC), and blockchain 

integration are examples of privacy-enhancing methods 

that have increased in popularity because they offer 

layered defense in contradiction of adversarial attacks and 

data leakage. Studies are beginning to highlight the trade-

offs between resource consumption, system latency, and 

detection accuracy. 
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5-2- Performance and Contribution of the 

TrFedDis Model 

Among the latest growths, the Trusted Federated 

Disentangling Network (TrFedDis) stands out as a 

prominent model that handles the problem of non-IID data 

distributions and domain feature change. TrFedDis uses 

feature separation to maintain local-specific illustrations 

while learning domain-invariant features across clients, in 

contrast to traditional FL models that experience 

performance deprivation as a result of client heterogeneity. 

According to experimental assessments, TrFedDis 

outperforms standard FedAvg and FedProx in non-IID 

environments by up to 6% in terms of accuracy. 

Additionally, by assuring confidence-aware aggregation, it 

progresses flexibility against poisoning attacks. By 

enhancing generalizability and trust in global model 

updates, features crucial for practical arrangements in 

dynamic surroundings, this model makes a considerable 

contribution to the FL-IDS domain. 

5-3- Revisited Concepts with Deeper Insights 

Our study shows delicate transformations in the 

applicability of methods like adaptive clustering, 

knowledge distillation, and model compression, which are 

usually deliberated across studies. Model compression 

approaches like quantization and thinning work best in 

surroundings with inadequate resources, such as mobile 

edge devices. When models are moved across 

heterogeneous devices or between domains, knowledge 

distillation helps to preserve performance. For managing 

non-IID data and enhancing fairness in cooperative 

training, adaptive learning methods such as clustered FL 

and personalized FL present feasible responses. However, 

the effectiveness of these approaches is regularly 

determined by the particular IDS application domain and 

infrastructure limitations. 

6- Conclusions 

This review thoroughly investigates the use of Federated 

Learning (FL) in Intrusion Detection Systems (IDS), 

providing an organized taxonomy and deep analysis of key 

challenges and solutions. By addressing privacy concerns, 

communication constraints, and data heterogeneity, FL 

presents a scalable and privacy-aware approach for real-

world IDS deployments. The paper also highlights future 

research directions such as cross-domain FL, adaptive 

clustering, model compression, and privacy-enhancing 

encryption standards. These insights offer valuable 

guidance for researchers and developers working on 

privacy-centric, distributed intrusion detection solutions 

across critical sectors like healthcare, smart grids, and IoT-

enabled environments. 
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Appendix A: Correction Table 

 

Reviewer Comment 

 

Author Modification 

Clarify the reason for 

selecting articles only 

until 2024, although we 

are now at the end of 

2025. 

Added a paragraph in Section 

3.1 – Search period and 

rationale for 2024 cutoff 

explaining that the search and 

extraction were completed in 

March 2024, hence studies up 

to that date were included. 

Also mentioned that future 

updates will incorporate post-

2024 studies. 

Present the introduction 

under a single heading, 

without internal 

subdivisions. 

Reorganized the Introduction 

into a single unified section, 

merging previously separate 

subsections (1.1–1.3). All 
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include references. (Page 2) 

Add references for all 

uncited statements in 

the introduction. 

Inserted supporting citations 

for every factual statement 

about IDS, FL, and privacy 

challenges.  

(Pages 2–3) 

Move the correction 

table to the appendices. 

Moved the correction table to 

Appendix A at the end of the 

paper and added a reference in 

the text indicating its new 

location. 

In the methodology, 

explain (with 

references) the use of 

the Parisa version code 

and justify the choice 

of databases. 

Added a new subsection titled 

“Parisa code explanation” in 

Methodology (3.4) describing 

its purpose, implementation 

(Python 3.8 with requests, 

pandas, pyPDF2), and manual 

verification process. Also 

justified database selection 

(IEEE Xplore, ACM, 

SpringerLink, ScienceDirect, 

arXiv). 

Provide a PRISMA 

diagram. 

Included an PRISMA diagram 

(Figure 2) summarizing 

identification, screening, and 

inclusion steps. Added note 

that a high-resolution image 

will appear in the camera-

ready version. 
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completed the CASP 

checklist and how 

many articles met the 

inclusion criteria. 

Section 3.3 – Screening and 

CASP checklist specifying 

that two independent 

reviewers completed the 

CASP checklist; 78 studies 

met inclusion criteria after 

resolving 8 disagreements.  

(Page 6) 

Include challenges, 

open issues, and future 

directions as 

subsections of the 

findings. 

Restructured Findings 

(Section 4) to include three 

new subsections each 

supported with citations.  

(Pages 9–11) 

Ensure that findings 

correspond to the 

selected articles and 

include proper 

citations. 

Revised Findings and Results 

& Synthesis sections to ensure 

every statement is backed by 

the 78 reviewed studies, with 

updated in-text references.  

(Pages 9–12) 

 

Appendix B: CASP Checklist Template and Scoring 

Thresholds 

CASP Question 

 

Response 

(Yes/No/Partial) 

Score 

Did the study address a 

clearly focused issue? 

Yes 1 

Was the cohort recruited in 

an acceptable way? 

Yes 1 

Was the exposure accurately 

measured? 

Partial 0.5 

Were the confounding 

factors identified and 

accounted for? 

Yes 1 

Was the follow-up complete 

and long enough? 

Yes 1 

Were the outcomes 

measured in a valid and 

reliable way? 

Yes 1 

Overall, was the study of 

high quality? 

Yes 1 

Scoring Thresholds: High Quality: 8–10 Moderate 

Quality: 5–7, Low Quality: 0–4 

Appendix C: Parisa code summary and access details 

Section Description Details 

Code Name Parisa Python-based 

framework for 

federated intrusion 

detection system 

(IDS) 

Purpose Implements 

privacy-

preserving 

intrusion 

detection using 

federated 

learning 

Designed to detect 

network anomalies 

across distributed 

nodes without sharing 

raw data 

Main 

Features 

Federated model 

training across 

multiple clients 

- Local data 

preprocessing 

and feature 

extraction 

- Model 

aggregation at 

central server 

- Explainable 

intrusion alerts 

and risk scores 

Supports common 

network datasets 

(NSL-KDD, 

CICIDS2017) 

Dependencies TensorFlow >= 

2.12 

- PySyft >= 0.7 

- pandas >= 2.1 

- scikit-learn >= 

1.2 

Installable via pip 

Usage 

Summary 

1. Configure 

federated clients 

and server 

2. Load and 

preprocess 

network datasets 

locally 

3. Train local 

models and 

perform 

federated 

aggregation 

 

Sample scripts and 

configuration 

templates provided in 

GitHub repository 

Access GitHub 

Repository: 

https://github.co

m/YourUsernam

e/Parisa-FL-IDS 

Public access  
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