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Abstract

This paper presents a systematic review of intrusion detection systems (IDS) that leverage federated learning (FL) to
enhance privacy in distributed cybersecurity environments. A total of 78 peer-reviewed studies published between 2019 and
2024 were selected using PRISMA guidelines. We categorize FL-based IDS solutions based on architecture (centralized,
decentralized, hierarchical), aggregation methods (e.g., FedAvg, DAFL), and privacy-preserving techniques (e.g.,
differential privacy, homomorphic encryption). The survey also examines solutions to key challenges such as
communication overhead, data heterogeneity, and poisoning attacks. Furthermore, this study outlines unresolved issues and
proposes future research directions, including adaptive federated optimization and cross-domain deployments. This review
serves as a valuable resource for researchers and practitioners aiming to develop privacy-aware, scalable, and intelligent

IDS using federated learning.

Keywords: Federated Learning; Intrusion Detection; Data Privacy; Cyber security.

1- Introduction

Cybersecurity threats continue to grow in complexity and
scale, posing significant risks to individuals, organizations,
and critical infrastructure. Intrusion Detection Systems
(IDS) play a vital role in identifying unauthorized
activities and protecting digital assets. While machine
learning (ML)-based IDSs have improved detection
accuracy, most rely on centralized architectures that
require aggregating raw data from multiple sources raising
serious privacy concerns. Regulatory frameworks such as
GDPR and HIPAA further restrict data sharing across
entities. As a result, there is an urgent need for privacy-
preserving IDS solutions that can operate effectively
across distributed environments without exposing sensitive
data.

Cybersecurity threats are a most important problem in
today's world, which is becoming more digital and
interrelated by the day. They pose a threat not only to
individual privacy but also to the working constancy of
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industries and national infrastructure. Networked system
vulnerabilities are often used by malicious actors to get
illegal access, bargain confidential data, hinder services, or
expose data integrity [1]. These risks encompass a wide
variety of attacks, such as ransomware, phishing, denial-
of-service (DoS), zero-day exploits, and Advanced
Persistent Threats (APTs). Thus, it is more significant than
ever to have defense mechanisms that are both smart and
active. By continuously seeing system behavior, network
traffic, and user actions, intrusion detection systems (IDS)
play a vital part in the defense ecosystem by catching
infrequent or doubtful patterns that could point to cyber
intrusions [2][3]. IDS must progress to become more
accurate, flexible, and proactive in present threat detection
while reducing false positives and assuring system
scalability, seeing the dynamic character of cyberattacks
and their growing complexity.

Traditional IDS technologies have advanced, especially
those that use deep learning (DL) and machine learning
(ML) for anomaly detection, but there are still a number of
noteworthy matters that necessitate being addressed. The
centralized architectures used by the mainstream of ML-
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based IDS methods combine raw data from several
terminations into a single server for training and valuation.
However, this pattern presents thoughtful risks to data
privacy because it may expose private user data during
transmission or storage, including IP logs, user IDs,
medical histories, or personal behavioural patterns [4][5].
Administrations are also regularly unable or grudging to
share data outside of their locations due to ethical, lawful,
and regulatory restrictions like GDPR, HIPAA, and data
authority laws. This leads to disjointed datasets with little
variety, which makes it harder to detect attacks in real-
world surroundings and causes biased learning and poor
generalization [6]. Strong intrusion detection model
training is additionally difficult due to class inequality,
data sparsity, non-IID (non-independent and identically
distributed) data distributions, and altering attack
signatures. Structuring a safe, supportive, and scalable IDS
therefore needs tackling these privacy and data distribution
problems.

Federated Learning (FL), which protects user privacy
while taking the disadvantages of centralized learning, has
become a game-changer. Without sharing raw data, it
allows numerous clients like distributed organizations,
edge nodes, or IoT devices to work together to train a
common global model [7][8]. Private data is kept local and
secure because only model updates such as weights or
inclines are sent. IDS applications, where privacy and
security are vital, are preferably right for this distributed
learning framework. FL is extremely applicable to
businesses like finance, healthcare, perilous infrastructure,
and smart cities because it permits administrations to gain
from shared knowledge and model development without
exposing sensitive data [9][10][11]. Additionally, new
progress in FL includes privacy-enhancing skills such as
secure multiparty computation (SMC), homomorphic
encryption,  blockchain-based  authentication, and
differential privacy [12][13]. These protections raise
confidence, lower the possibility of privacy destruction,
and promise robust protection against aggressive
movements like model inversion and data poisoning. FL
thus encourages a cooperative cybersecurity ecosystem in
addition to addressing the disadvantages of data sharing
[14][15].

Even though there is a rising amount of study on the use of
FL in IDS, there are still a number of noteworthy gaps. A
detailed framework for comparing FL-IDS models across
significant sizes, including model aggregation strategies
(e.g., FedAvg, FedProx, DAFL), privacy-preserving
techniques (e.g., differential privacy, SMC), system
architectures (e.g., centralized vs. hierarchical FL), and
practical deployment circumstances, is missing in many
formerly published works that focus on developing
particular FL algorithms or privacy techniques [16][17].
Moreover, the mainstream of study disregards the trade-
offs between accuracy, latency, communication overhead,

and resource consumption, all of which are dangerous for
applying FL in surroundings with partial resources, like
edge networks and the Internet of Things [18][19]. It is
also challenging for experts and investigators to accept or
enlarge upon current solutions due to the lack of
discussion surrounding benchmark datasets, performance
evaluation metrics, and scalability across various domains.
An embattled, inclusive, and prepared investigation of FL
precisely within the IDS domain is lacking, despite the fact
that previous reviews have examined FL and IDS
autonomously [20]. By presenting a thorough literature
review that highlights problems, classifies approaches, and
proposes future research paths, this work fills that
knowledge gap.

FL is a machine learning method that enables the
development of models across decentralized edge
computers or servers holding local data samples without
requiring data exchange. This paradigm for collaborative
learning is especially pertinent when discussing privacy
issues with intrusion detection systems (IDS). For efficient
training and pattern recognition, traditional intrusion
detection systems frequently need access to private and
sensitive data. However, there are serious privacy concerns
associated with gathering and centralizing such data. FL
offers a promising solution by allowing ML models to be
trained on distributed data without requiring central data
sharing.

This paper's major goal is to offer a wide and systematic
overview of the state-of-the-art in Federated Learning for
Intrusion Detection Systems (FL-IDS) from 2019 to 2024.
Using prearranged presence and elimination criteria, 78
peer-reviewed articles in all were selected from reputable
digital libraries, including IEEE Xplore, ACM Digital
Library, ScienceDirect, and SpringerLink.

The following are the contributions made by this survey:

e System architecture, combination plans, privacy
mechanisms, and application areas (such as IoT,
IIoT, 5G, and healthcare) are used to classify FL-
IDS methods.

e [t examines methods for refining privacy, such as
adversarial defense, differential privacy, and
secure aggregation.

e It highlights significant problems and restrictions
like  federated poisoning  attacks, data
heterogeneity, and communication overhead.

e With an emphasis on edge computing, cross-
domain transfer, adaptive FL models, and real-
time IDS deployment, it gives a research roadmap
and future directions.

This paper's residual segments are arranged as follows:
The paper is resolved with final perceptions and practical
implications in Section 6. Section 4 deliberates significant
open challenges; Section 5 summarizes future research
directions; Section 3 analyses and classifies existing FL-
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IDS methods; and Section 2 presents the basic ideas of
IDS and FL and highlights privacy challenges.

2- Foundations and Literature Overview

FL entails cooperatively wupdating models across
decentralized devices. Let's represent the key components,
Global Model parameters 6 and Local model parameters
for device i is 8i The global objective function F(0) is
typically defined as the average of local objective
functions across all devices:

F(6) = - 31, f(60) (1)
Here n is the overall quantity of devices, f(0i) shows
local objective function for device i At each iteration, each
device i computes a local update Afi by minimizing its
local objective function as

AB; = arg min AO fi(0; + A6;) 2)
The local model updates Af; subsequently communicated
to a centralized server for compilation and global models
updated by aggregating the local updates as,

6« ~¥7.(6;+A0;) (3)
The process of local updates, communication, and
aggregation is repeated for multiple iterations or until
convergence.

Federated Learning (FL), which redefines the conventional
data-centric techniques, emerges as a promising paradigm
that addresses these issues and changes the intrusion
detection landscape [21]. In federated learning, businesses,
manufacturers, or devices that interact with data are
considered clients, and each client's data privacy is
preserved [22]. Clients build identical deep local models
and train them with their own datasets. On the cloud center
server, create a global depth model with the same
framework as the local model [23]. Through constant
communication between the training's central server and
several clients, the global and local models are transferred
as shown in figurel. In order to accomplish particular
learning tasks, a global depth model with outstanding
performance is ultimately jointly established. The two
primary stages of a federated learning scenario are local
update and global aggregation, to put it briefly [24]. This
illustrates how clients can share and profit from each
other's data through FL without having to send private
information to a central server. Federated Learning, with
its decentralized model training paradigm, provides a
novel solution that prioritizes protecting sensitive user data
privacy while simultaneously improving intrusion
detection models' accuracy and efficiency. In this
extensive analysis, we examine the complementary nature
of FL and IDS, delving into the subtleties of this
innovative technology and its revolutionary effects on
cybersecurity privacy protection [25][26].

The purpose of this survey is to present an in-depth study
of the difficulties posed by centralized intrusion detection
systems (IDS) models, highlighting the privacy
implications that are now a major topic in the discussion of
network security [27][28]. By keeping aim to clarify how
this decentralized learning paradigm minimizes privacy
concerns  while  preserving  intrusion  detection
effectiveness by delving into the core ideas of federated
learning [29][30]. This paper a look into the future where
the combination of decentralized machine learning and
cybersecurity strengthens digital defences and upholds the
fundamental right to privacy in an increasingly connected
world as we navigate the complexities of Federated
Learning for enhanced privacy in Intrusion Detection
Systems [31]. This is a journey that goes beyond
traditional boundaries.
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Figl: Federated Leaming System in Generalized Format
Table-1 provides a summary of the definitions of the
abbreviations used in the paper in order to aid with

comprehension.

Table 1: Common abbreviations listed with explanations

Acronym Definition
FL Federated Learning
IDS Intrusion Detection Systems
NIDS Network Intrusion Detection systems
DAFL Dynamic Weighted Aggregation Federated
Learning
FPR False Positive Rates
TPR True Positive Rates
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10T Internet of Things
DAFL Dynamic Weighted Aggregation Federated
Learning
SMC Secure Multiparty Computation
ACGAN Auxiliary Classifier Generative Adversarial
Networks

2-1- Federated Learning (FL) Applications in
Cyber Security

FL has garnered significant interest in the field of
cybersecurity, particularly in relation to intrusion detection
systems (IDS). FL allows collaborative learning while
preserving data confidentiality and locality. In order to
prevent data privacy violations, a novel architecture
known as Decentralized and Online Federated Learning
Intrusion Detection (DOF-ID) has been proposed. This
architecture enables each intrusion detection system to
learn from expertise obtained in other systems [32]. An
alternative method is the DAFL scheme, which better
detects intrusions with less communication overhead by
implementing adaptive selection and balancing strategies
for local models. [33]. In this regard, FL has great promise,
as demonstrated by Campos [34] and Ferrag [35], who
particularly point out that FL is more accurate and private
than non-federated learning. Alazab [36] highlights the
technology's potential for real-time cybersecurity by
offering a thorough overview of FL models for
authentication, privacy, trust management, and attack
detection. A hybrid ensemble approach for FL-based IDS
in IoT security is presented by Chatterjee [37], which
achieves low FPR and high TPR on both clean and noisy
data.

2-2- Privacy-Enhancing Techniques in FL-IDS

According to Ruzafa-Alcazar's [38] evaluation of
differential privacy techniques, using Fed+ yields result
that are comparable to those of non-privacy-preserving
techniques. But it does not provide a comprehensive
analysis of the communication and computational
overhead associated with the application of such
techniques in resource-constrained IIoT scenarios. When
Ansam Khraisat [39] evaluates Federated Learning against
conventional deep learning models, Federated Learning
outperforms the latter in terms of accuracy and loss,
especially in situations where data security and privacy are
prioritized. Federated mimic learning, a novel approach
put forth by Al-Marri [40], mixes mimic learning and
federated learning to produce a distributed intrusion
detection system that poses the least risk to users' privacy
but this research has several shortcomings: it does not
examine potential vulnerabilities, does not compare the
suggested solution with other privacy-preserving methods,
and raises scalability issues. It also does not address

computational and communication overhead. In 2020,
Yang presents privacy-preserving protocols that use
cryptographic  techniques to safeguard participant
parameter data in Federated Learning [41]. To safeguard
identity privacy, a lightweight linkable ring signature
scheme is suggested in [42].

Among the multiple techniques, one technique is to
securely compute patient-level similarity scores amongst
hospitals using Secure Multiparty Computation (SMC),
which allows patient clustering without sharing patient-
level data [43]. In order to ensure privacy guarantees, the
Federated Learning framework incorporates differential
privacy (DP), which involves adding calibrated noises.
This approach has been applied to the Federated
Averaging algorithm, resulting in the ULQ-DP-FedAvg
[44]. Additionally, the Fed+ aggregation function
produced comparable results even with the addition of
noise to the federated training process when differential
privacy techniques were evaluated for training a FL-
enabled IDS for industrial IoT [45]. These methods seek to
protect sensitive data in Federated Learning for IDS while
solving issues related to privacy.

The effectiveness of FL in IDS has been evaluated taking
into account data heterogeneity, non-independent and
identically distributed (non-IID) data, and data privacy
concerns. One study found that non-IID data had an
impact on FL performance and proposed a FL data
rebalancing method based on ACGAN [46]. An additional
study evaluated the effectiveness of FL IDS solutions with
respect to deep neural networks (DNNs) and deep belief
networks (DBNs) using a realistic dataset of IoT network
traffic. In order to lessen the effects of data heterogeneity,
they investigated pre-training and different aggregation
techniques [47]. An MCDM framework was also
developed in order to standardize and benchmark ML-
based IDSs utilized in FL structure for IoT app
development. The framework included standardizing
assessment criteria, developing an evaluation decision
matrix, benchmarking, and using MCDM techniques to
select the best IDSs. [48].

The application of Hierarchical Federated Learning (HFL)
and Federated Averaging (FedAvg) to enhance the speed
and precision of Intrusion Detection Systems (IDS) in
Internet of Things applications is highlighted by Saadat
[49] and Lazzarini [50]. However, Federated Adaptive
Gradient Methods (Federated AGMs) are presented by
Tong [51] as a possible advancement over current
techniques, especially when handling non-IID and
unbalanced data. More emphasis is placed on the necessity
of ongoing study and analysis of various approaches in
practical settings by Campos [52], particularly in the
framework of IoT. Furthermore, distinct data rebalancing
strategies and aggregation techniques, like auxiliary
classifier generative adversarial networks (ACGAN), can
lessen the detrimental effects of non-IID data on FL. To
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deal with the heterogeneity of data, models, and
computation, Full Heterogeneous Federated Learning
(FHFL) creates synthetic data, aggregates models using
knowledge distillation, and makes use of idle computing
resources [53]. These approaches allow for cooperative
model training in FL for IDS while maintaining privacy
protection. Table-2 lists the different datasets that have
been used in previous research.

Table-2 The data sets used in related research

Datasets

NSL-KDD dataset: 125,973 training records, 22,544 test
records, used for network intrusion detection

ToN_IoT dataset: 83 features, 4,404,084 samples

NSL-KDD dataset

NSL-KDD dataset for Federated Learning in IoT intrusion
detection evaluation.

MNIST and UCI Human Activity Recognition Dataset

Bot-1oT dataset, the MQTTset dataset, and the TON_IoT
dataset

In terms of reliability, effectiveness, and adaptability,
federated learning (FL) has shown promising results for
intrusion detection system (IDS) applications. Without
distributing the raw data, FL allows for ML/DL models to
be trained on network traffic data gathered from several
edge devices [54]. Internet of Medical Things (IoMTs) and
tactical military environments simply a few of the domains
where FL has been successfully applied [55][56]. With
accuracy rates exceeding 93%, FL has demonstrated high
model performance in identifying malicious activity. By
using federated training of local device data, FL further
guarantees data security and privacy while maintaining
privacy and improving the model as a whole. Further
demonstrating FL's efficiency is the fact that it achieves
good detection performance with little network
communication overhead. Marulli [57] underscored the
significance of efficiency and effectiveness in Federated
Learning (FL). Specifically, she stressed the need for
accurate federated algorithm tuning and evaluated the
trade-offs between accuracy decay and latency in a
decentralized learning approach. These results demonstrate
FL's potential as a useful strategy for intrusion detection
systems  (IDS)  applications, providing  precise
identification, effective communication, and scalability in
a variety of network environments. All of these studies
highlight FL's potential in IDS applications, but they also
point to the need for more research to maximize FL's
effectiveness.

2-3- Compare FL-IDS with traditional centralized
IDS models

This paper compares traditional centralized IDS models
with FL-IDS, a decentralized framework for federated

learning (FL) with authentication and verification. FL-IDS
uses blockchain technology to manage identities
dynamically and stops unauthorized parties from initiating
poisoning attacks [58]. It permits local devices to confirm
the received global model and guarantees that only
authorized local devices can add updates to the blockchain.
Traditional centralized IDS models, on the other hand, are
vulnerable to single points of failure because they depend
on centralized servers. FL-IDS provides decentralization,
non-tampering, and non-counterfeiting benefits by
substituting blockchain technology for the centralized
server in order to address this problem [59]. Furthermore,
compared to conventional algorithms, FL-IDS is
demonstrated to be more communication-efficient and
resilient against malevolent nodes [60]. Together, these
studies highlight FL's potential to improve IDS privacy
and performance in cybersecurity. Table 3 shows the
comparison of FL vs Centralized IDS.

Table-3 Comparison Table: FL vs Centralized IDS

Feature Traditional FL-based IDS
Centralized IDS
Data Sharing Requires sending Only model
raw data to server updates shared
Privacy Low (data exposure High (local data
risk) stays private)
Scalability Moderate High (edge-device
friendly)
Resilience Vulnerable to Decentralized and
single point failure more robust
Communication | Low (single server) High (needs
Cost etficient
compression)
Security Central server is Can include secure
target aggregation

Table 4 summarizes key federated learning approaches
applied in IDS research between 2020 and 2024,
highlighting their contributions and limitations.

Table-4 Comparative Summary of Federated Learning-Based IDS

Approaches
Ref Year Methodology & Drawbacks
Advantages
[33] 2023 DAFL - Adaptive ~Needs
model selection to optimization for
reduce real-time [oT
communication scenarios
[36] 2022 Overview of FL in Lacks model-
IDS for privacy & specific
trust management evaluation
[38] 2023 Fed+ using DP for Overhead not
IIoT with discussed for low-
comparable results resource settings
to non-FL
[40] 2020 Federated mimic Limited
learning for scalability, lacks
distributed IDS comparison with
other techniques
[46] 2023 Data rebalancing Increased model
using ACGAN to complexity
handle non-IID data
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3- Methodology

3-1- Search period and rationale for the 2024
cutoff

The review covers studies published from January 2019 up
to March 2024. The cutoff date (March 2024) reflects the
date when the systematic search and data extraction
pipeline were executed. This ensures consistency and
reproducibility. We explicitly note that newer works
published after March 2024 are not included but may be
incorporated in a future update.

3-2- Databases and justification

We selected IEEE Xplore, ACM Digital Library,
SpringerLink, ScienceDirect, and arXiv as the primary
sources. These were chosen due to their wide coverage of
peer-reviewed ML and cybersecurity research and
inclusion of both published and preprint works.

3-3- PRISMA Diagram

The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) rules helped as the
motivation for this survey's systematic method, which
guarantees thorough exposure, reproducibility, and
transparency. The review focused on the study that
addressed Federated Learning (FL) in the context of
Intrusion Detection Systems (IDS) and was published
between January 2019 and March 2024. It paid specific
attention to model presentation and privacy-preserving
procedures. A planned search was carried out across five
main academic databases, like ACM Digital Library, [IEEE
Xplore, SpringerLink, ScienceDirect, and arXiv, to collect
relevant works. The search terms (e.g., "Federated
Learning" OR "FL") AND ("Intrusion Detection System"
OR "IDS") AND ("privacy" OR "cybersecurity" OR "non-
IID" OR "aggregation") are collective keywords and
Boolean operators. The 148 papers that were reimbursed
by the original search were riddled and divided into three
steps: (1) full-text review, (2) abstract showing, and (3)
duplicate removal. Following the application of the
exclusion criteria (non-English, editorial/commentary
papers, or general ML unrelated to IDS) and inclusion
criteria (peer-reviewed, focused on FL-IDS, practical
relevance, and investigational detail), 78 studies in total
were selected for additional investigation. The
identification, showing, suitability, and insertion phases of
the selection process were defined in a PRISMA flow
diagram. A PRISMA flow diagram illustrating the review

process has been included in the revised version as Figure
2.

Record |denfification (n=143)

i

After duplicates removed (n= 122)

i

Records Screened (n=122)

i

Full-text assessed (n = 92) o

i

Included in final synthesis (n = 7&)

1

| Excluded (n = 14) }—

Fig2. PRISMA Flow Diagram

3-4- Screening and CASP checklist and Parisa
code explanation

Screening was performed by two independent reviewers,
with discrepancies resolved by a third adjudicator. Both
reviewers applied the CASP checklist to assess study
quality. 78 studies met inclusion criteria, each satisfying at
least 5 of the 7 CASP key items. A coding context
covering publication details, FL architecture (centralized,
hierarchical, decentralized), privacy-enhancing methods
(e.g., secure multiparty computation, blockchain
integration, differential privacy), aggregation strategies
(e.g., FedAvg, DAFL, FedCME), datasets used (e.g., NSL-
KDD, ToN-IoT, CSE-CIC-IDS2018), and performance
metrics (accuracy, precision, recall, FPR, TPR) was used
to thoroughly extract data from the selected revisions. To
find tendencies, technical progressions, practical uses, and
research gaps, the studies were assembled and studied
thematically. An improved form of the CASP (Critical
Appraisal Skills Programme) list was used to measure the
objective clarity, experimental consistency, significance of
results, transparency of procedure, and discussion of
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limitations to regulate the reliability and procedural
consistency of the included works. Articles were only
involved if they pleased a minimum quality standard in
each of these extents. This systematic and detailed method
guarantees that the survey delivers a reliable and insightful
summary of the varying arena of FL-based intrusion
detection systems. The CASP checklist template and
scoring thresholds used in this study are provided in
Appendix B.

Parisa v1.0 is a Python-based automation script used to
standardize the search and extraction process across
databases. It uses libraries such as requests, pandas, and
pyPDF2 to automate query execution and deduplication.
All inclusion/exclusion decisions were made by human
reviewers. The Parisa repository can be shared upon
request.

4- Findings
4-1- Communication Overhead

The transmission of model parameters in every round of
FL-based methods results in high communication costs
that can impede their actual deployment and pose security
risks [61]. Additionally, FL training is negatively impacted
by the large model size and equally dispersed private data,
particularly in distillation-based FL [62]. In order to tackle
these difficulties, scholars have suggested techniques like
semisupervised FL through knowledge distillation and
DAFL. To enhance detection performance and minimize
communication overhead, these techniques make use of
unlabelled data, adaptive filtering and balancing strategies
for local models, and optimized deep neural networks [63].
Based on experimental results, these methods are effective
in improving detection performance while requiring less
communication overhead.

4-2- Heterogeneity

Heterogeneity presents challenges for federated learning
(FL) in intrusion detection systems. The heterogeneity of
data in FL can lead to slower convergence speed, affecting
model performance [64]. The training of FL models may
also be hampered by non-IID data, which is frequently
found in I[oT systems [65]. Many methods have been
suggested to deal with these issues. One method is to train
local models with non-IID data using instance-based
transfer learning [66]. An alternative strategy for reducing
the effects of data heterogeneity is to make use of pre-
training and investigate various aggregation techniques
[67].

4-3- Federated Poisoning Attacks

Federated poisoning attacks pose a challenge in FL for
IDS. Federated architectures work better because of the
distributed nature of data found in client edge devices.
Although this property protects the privacy of the data
while it's in transit and keeps it from being gathered in one
location, the data in question is still at risk. The labels of
the data can be readily changed on a client's device. We
refer to these attacks as poisoning attacks. These attacks
compromise the global model's accuracy and privacy by
having malevolent actors alter training data or model
updates. In order to address this issue, several papers
suggest defence mechanisms against poisoning attacks.
Wang et al. propose a PAPI-attack that exploits distinctive
capacity in cyclical model updates to infer sensitive
information [68]. Yan et al. introduce a CLP-aware
defence against poisoning of federated learning (DeFL)
that detects malicious clients and identifies critical
learning periods to guide the removal of detected attackers
[69]. To stop data poisoning attacks, Ovi et al. provide a
confident federated learning framework that verifies label
quality and removes incorrectly labelled samples from
local training [70].

Addressing these challenges requires a combination of
algorithmic advancements, technological solutions, and
robust privacy-preserving mechanisms. Ongoing research
and development efforts are focused on overcoming these
obstacles and improving the practicality of Federated
Learning in various applications.

4-4- Future Directions

Federated learning is a vibrant and developing field of
study. There are still many important new areas that need
to be investigated, even though recent work has started to
address the issues covered in Section of challenges. We
briefly discuss a few promising research directions in the
context of privacy-centric intrusion detection systems.
Future directions entail investigating and addressing
emerging challenges, integrating cutting-edge technologies,
and improving the useful applicability of federated
learning. Future directions that could be pursued are as
follows:

Effective Model Transfer and Compression:

In order to minimize communication overhead in federated
learning, investigate methods for effective model
compression and transfer. Given the complexity and
heterogeneity of network traffic generated by distributed
networks such as wearables, mobile phones, and
autonomous vehicles, privacy-preserving decentralized
learning techniques like federated learning (FL) have
become essential. In order to train a model collaboratively
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across multiple institutions without requiring local data
sharing, FL ensures both privacy and security.
Unfortunately, domain feature shift brought on by various
acquisition devices or clients can impair the performance
of FL models. In response, a brand-new trusted federated
disentangling network known as TrFedDis has been put
forth. It makes use of feature disentangling to preserve
local client-specific feature learning and capture global
domain-invariant cross-client representation on the one
hand. [71].

Flexible and Adaptive Federated Learning:

Create flexible and dynamic federated learning
frameworks that can adapt to evolving intrusion patterns
and network conditions. This could entail developing self-
learning models that can adjust on their own to changing
network topologies and novel forms of attacks. Large
training iterations, a lack of adaptivity, and non-IID data
distribution are just a few of the difficulties encountered in
federated learning that have been brought to light by
existing research in this field. Several papers propose
adaptive algorithms that address these challenges and
provide theoretical guarantees for convergence and
improved performance. For example, Kim et al
propose A-SGD a step size rule for stochastic gradient
descent (SGD) that enables each client to use its own step
size based on the local smoothness of the function being
optimized [72]. Furthermore, a dynamic adaptive cluster
federated learning scheme is put forth to handle changes in
real-time data distribution and offer flexibility in cluster
partitioning [73]. These approaches demonstrate the
importance of flexibility and adaptivity in FL-IDS.

FL’s Encryption Standards:

In order to further improve the protection of sensitive data
during the federated learning process, research and put
into practice advanced privacy-preserving mechanisms
like homomorphic encryption, which encrypts local
gradients or model updates before they are shared with the
centralized server [74], safe multi-party calculations [75],
and separate privacy.

Cross-Domain Federated Learning:

Extend research into cross-domain federated learning,
where models trained in one domain can be applied to
enhance intrusion detection in a different domain. This
methodology has been implemented across multiple fields,
such as 2D surgical image segmentation [76] and
knowledge graph embedding [77]. Regarding surgical
image segmentation, the technique tackles issues of data
scarcity, privacy safeguarding, and domain shifts between
various canters. The method improves the embedding of
various clients in knowledge graph embedding by

facilitating safe interaction between domains without
requiring data sharing.

Edge Computing in FL based IDS:

Federated learning is incorporating edge computing for
intrusion detection systems (IDS). This method shifts
model aggregation to edge servers in order to preserve
data privacy and enhance federated learning performance.
[78]. In C-V2X networks, edge computing has greatly
improved Intrusion Detection System (IDS) performance,
especially when paired with Federated Learning [79].
Resource-efficient FL techniques, such as knowledge
distillation and model compression, have been investigated
within the framework of mobile edge computing in order
to meet the demanding resource requirements of mobile
clients [80].

By exploring these research methods, the field of FL-IDS
can progress toward intrusion detection systems that are
more resilient, flexible, and privacy-preserving, and that
are better suited to handle the changing demands of
cybersecurity.

5- Results and Synthesis

This section précises the main conclusions drawn from a
detailed investigation of 70 chosen papers on Federated
Learning (FL) for Intrusion Detection Systems (IDS). The
consequences are prepared into two main themes: (1) the
state of FL-IDS architectures and privacy policies at the
moment, (2) remarkable model contributions like
TrFedDis.

5-1- Summary of Trends in FL-Based IDS
Research

According to the analysis, decentralized and privacy-
preserving IDS designs driven by FL are becoming more
and more common, particularly in the IoT, IloT, and
healthcare environments. FedAvg is still the most popular
aggregation method, with FedProx, DAFL, and FedCME
succeeding thoroughly behind. Each of these methods
handles a diverse set of matters, such as communication
bottlenecks and client heterogeneity. Differential privacy,
secure multiparty computation (SMC), and blockchain
integration are examples of privacy-enhancing methods
that have increased in popularity because they offer
layered defense in contradiction of adversarial attacks and
data leakage. Studies are beginning to highlight the trade-
offs between resource consumption, system latency, and
detection accuracy.
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5-2- Performance and Contribution of the

TrFedDis Model

Among the latest growths, the Trusted Federated
Disentangling Network (TrFedDis) stands out as a
prominent model that handles the problem of non-IID data
distributions and domain feature change. TrFedDis uses
feature separation to maintain local-specific illustrations
while learning domain-invariant features across clients, in
contrast to traditional FL models that experience
performance deprivation as a result of client heterogeneity.
According to experimental assessments, TrFedDis
outperforms standard FedAvg and FedProx in non-IID
environments by up to 6% in terms of accuracy.
Additionally, by assuring confidence-aware aggregation, it
progresses flexibility against poisoning attacks. By
enhancing generalizability and trust in global model
updates, features crucial for practical arrangements in
dynamic surroundings, this model makes a considerable
contribution to the FL-IDS domain.

5-3- Revisited Concepts with Deeper Insights

Our study shows delicate transformations in the
applicability of methods like adaptive clustering,
knowledge distillation, and model compression, which are
usually deliberated across studies. Model compression
approaches like quantization and thinning work best in
surroundings with inadequate resources, such as mobile
edge devices. When models are moved across
heterogeneous devices or between domains, knowledge
distillation helps to preserve performance. For managing
non-IID data and enhancing fairness in cooperative
training, adaptive learning methods such as clustered FL
and personalized FL present feasible responses. However,
the effectiveness of these approaches is regularly
determined by the particular IDS application domain and
infrastructure limitations.

6- Conclusions

This review thoroughly investigates the use of Federated
Learning (FL) in Intrusion Detection Systems (IDS),
providing an organized taxonomy and deep analysis of key
challenges and solutions. By addressing privacy concerns,
communication constraints, and data heterogeneity, FL
presents a scalable and privacy-aware approach for real-
world IDS deployments. The paper also highlights future
research directions such as cross-domain FL, adaptive
clustering, model compression, and privacy-enhancing
encryption standards. These insights offer valuable
guidance for researchers and developers working on
privacy-centric, distributed intrusion detection solutions

across critical sectors like healthcare, smart grids, and [oT-

enabled environments.
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