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Abstract  
The significance of an effective satellite attitude control system lies in its ability to ensure that data acquisition by a Low 

Earth Orbit (LEO) satellite is of good quality and reliable. In this paper, the design of an adaptive Proportional Integral 

Derivative (PID) controller and its modified form (PIDD), which includes an additional derivative component for a 

microsatellite y-axis attitude control system (ACS), is presented. Additionally, a Fuzzy Logic Controller (FLC) and its 

enhanced version, called Adjustable Gain Enhanced FLC (AGE-FLC), were designed. Models of the amplifier, actuator, 

and satellite structure were developed to derive the transfer function of the LEO satellite's yaw-axis attitude dynamics. 

Model Reference Adaptive Control (MRAC) based Proportional Integral Derivative (PID), referred to as MRAC-PID and 

its modified form, MRAC-PIDD, were designed. The models of the various control systems were developed in MATLAB 

and were used to simulate the designed control systems. The simulation results and analysis revealed that the MRAC-PID 

controller offered the most efficient performance in terms of fast response and transient time, with a rise time of 1.74 

seconds and a settling time of 6.19 seconds. Also, the MRAC-PIDD and AGE-FLC exhibited no overshoot, indicating 

efficient performance in terms of stability and smoothness in torque control. All proposed control systems for the LEO 

satellite yaw-axis ACS met the performance criteria, except for the PID and FLC controllers, which yielded overshoots of 

12% and 21.97%, respectively. Generally, it suffices to say that the introduction of the designed adaptive PID/PIDD 

controllers and the AGE-FLC enhanced the system performance. 

Keywords: Adaptive PID; Attitude Control System; Fuzzy Logic Controller; LEO Satellite; Yaw-axis.  
 

1- Introduction 

Satellite attitude refers to the orientation of a satellite in 

space, taking into account various coordinate systems [1]. 

The importance of satellite attitude control is evident in 

various areas, extending beyond communication, 

navigation, and earth observation. For example, in a 

communication satellite, it ensures that the satellite 

antennas are aligned with the Earth or other satellites, 

enabling reliable communication. Also, it maintains 

optimal signal strength by keeping the antenna pointed in 

the correct direction. The satellite's orientation in space is 

controlled by satellite attitude control (SAC), which 

ensures proper control manoeuvring. However, the flight 

attitude of the satellite changes to different degrees during 

the on-orbit flight of a satellite because of external 

disturbances and gravitational perturbations [2]. These 

disturbances acting on the satellite can cause it to shift 

over time, and the effect can manifest as angular variations 

in pitch, yaw, and roll [3]. Given that a satellite is exposed 

to varying disturbances, maintaining a preset attitude and a 

specified attitude is crucial to achieving the desired 

function and performance criteria [4]. Hence, for a satellite 

to accomplish its tasks, it is crucial to examine its control 

subsystem and then select the control technique that 

ensures the achievement of attitude adjustment and 

stability by improving both transient and dynamic 

characteristics, as well as steady-state performance [4]. 

Since a satellite is subject to various disturbances in orbit, 

its attitude and its reliability regarding data acquisition are 

largely dependent on the effectiveness of the SAC system. 

Consequently, several techniques are presented in previous 

studies for accurate satellite operation control. Classical 

and linear control schemes such as Proportional Integral 

and Derivative (PID) control algorithms, are prevalent 

implemented methods. As an example, a PID controller 

was used to stabilize the yaw-axis of a microsatellite by 

minimizing the Integral Time Absolute Error (ITAE) 

criterion in [5]. Similarly, other approaches involving the 

use of PID and its enhanced approaches in achieving 
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attitude control regarding satellite yaw-axis are well 

documented. The PID controller uses three simultaneously 

coordinated computational operations to carry out 

corrective commands that put the plant or process response 

in a new state [6]. In the control of plants or processes in 

industries, PID controllers have been the most applied 

technique among several other control strategies because 

of their design and implementation simplicity [7].  

Despite this advantage, the performance of the PID 

controller is largely affected by a mismatch in system 

parameters [8] and associated overshoot, which has led to 

many approaches, including intelligent algorithms, being 

used to tune its parameters [9]. Additionally, the PID 

controller is classified as a linear control system, 

exhibiting poor anti-interference capabilities and a 

significant disadvantage in its reliance on manual 

parameter adjustments. Therefore, several other control 

techniques are being implemented to address the 

shortcomings of the classical PID technique.  

A Model Reference Adaptive Control-based PID (MRAC-

PID) controller was applied in the yaw-axis stabilization of 

a microsatellite to enhance the settling time in [4]. PID and 

fuzzy-PID models were used in the SAC system. The PID 

offered faster steady-state, though there was certain torque 

oscillation, while the fuzzy-PID provided smoother and 

improved stability in transient and steady-state 

performance response [2]. Portella et al. [10] used four 

control moment gyroscopes (CMGs) pyramidal model to 

investigate the performance of a circular on-orbit flight 

satellite. The four CMGs' pyramidal arrangement employs 

either a linear quadratic tracker (LQT) with an integrator 

or exponential mapping control (EMC). The results 

indicated that the LQT has high settling time due to the 

use of only an integral control algorithm without 

proportional and derivative schemes. At the same time, the 

EMC showed faster but more oscillatory performance. PID, 

adaptive PID, and Fuzzy Logic Control (FLC) were 

separately compared in a laboratory nanosatellite and its 

testing system in [11]. The FLC rather than PID yielded 

significant improvement in energy consumption, 

convergence time, and robustness following changes in 

environmental conditions, which were the performance 

criteria, including steady state error (accuracy). 

Narkiewicz et al. [12] applied a PID controller whose 

gains are selectable for a nanosatellite attitude control and 

stabilization system with a generic model. In using 

radiation pressure of sum from solar panels with dual-

mode Model Predictive Control (MPC), three-axis 

stabilization control of a spacecraft attitude that is under-

actuated with two reaction wheels was achieved in [13]. 

Using a variable structured PID controller, [14] achieved 

attitude control of satellites by integrating a conventional 

PID model, trajectory planning, variable structure, and 

fault tolerance. The controller was designed to improve the 

convergence rate of the system. Enejor et al. [15] carried 

out a performance comparison of the PID control system 

and Linear Quadratic Regulator (LQR) regarding LEO 

satellite on-orbit flight stabilization. The study revealed 

that after 500 seconds, the PID was not able to stabilize the 

system, contrary to the LQR, which achieved the 

specifications for the yaw, roll, and pitch-axis. A genetic 

algorithm (GA) optimized fuzzy logic control system was 

used for attitude control in a nanosatellite by 

DelCastañedo et al. [16]. Considering the possible modes 

along the whole satellite mission, a multi-objective 

function cost was to optimize the fuzzy controller. Both 

mono and multi-objective optimizations were carried out. 

The system performance with mono objective optimization 

resulted in output that cannot be applied in practice as a 

result of the enormous cost of electrical power. The multi-

objective optimization offered results that permit some 

rapid flexibility in changing the controller, including at 

low cost. 

From the literature, it was observed that the adaptive PID 

controller effectively eliminates the oscillatory actions of 

PID, which were previously caused by initial overshoot. 

Consequently, the convergence time of the PID was 

significantly minimized for non-satellite ACS [11]. The 

high overshoot effect of a PID causes instability in the 

system's performance and impacts the smoothness of the 

control process. This underscores the need for a control 

system that will eliminate high overshoot in the system to 

ensure smooth and improved stability during the on-orbit 

flight operation of the satellite. Therefore, taking into 

account the advantage of an adaptive PID controller, an 

adaptive control system with a modified PID model (called 

MRAC-PIDD) and an enhanced FLC algorithm (called 

AGE-FLC) was proposed in this paper for the LEO 

satellite yaw-axis ACS. The main objective is to enhance 

the dynamic response of LEO satellite yaw-axis attitude. 

The specific objectives are to determine the dynamic 

equations of the components of satellite yaw-axis ACS, 

develop control systems based on the algorithms of the 

proposed solutions, and evaluate the performance of 

different control systems, including the proposed solution, 

via simulation tests in MATLAB/Simulink. 

2- System Design 

The yaw-axis attitude control system is modelled as a 

closed-loop control system, as shown in Figure 1. The 

system comprises a controller, an amplifier, a Direct 

Current (DC) motor, a satellite system, and a feedback 

sensor with unity gain. The controller regulates a system's 

behaviour by adjusting inputs to achieve the desired output. 

Its functions include monitoring the system's state, 
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comparing the actual output to the desired input, 

calculating the error, and sending a control signal to adjust 

the system's input. An amplifier increases the amplitude of 

a signal. In a feedback control system, it amplifies 

feedback signals to improve system stability and accuracy. 

DC motor is an electric motor that converts direct current 

electrical energy into mechanical energy. In control system, 

it can be used for position control, speed control, or 

motion control. In the control system, the feedback sensor 

measures physical parameters such as position and 

provides feedback to the controller, thus allowing it to 

adjust the system's input; and helps detect deviation from 

the desired set points.  

rθ (s) Adaptive
Controller

Amplifier DC Motor
Satellite
System

oθ (s)

dT (s)

Feedback
Sensor

Fig. 1 Closed Loop Network of Satellite Yaw-axis ACS 

For the yaw-axis ACS shown in Figure 1, the objective of 

the design is to ensure that the yaw-axis attitude or angle is 

stabilized by providing a suitable control manoeuvre that 

returns and keeps the satellite on its referenced or target 

attitude. In the figure, θr(s) is the reference or target 

attitude, while θo(s) is the actual attitude. Hence, to 

achieve stabilization and effective control of yaw-axis 

attitude at any instant, θr(s) = θo(s). To meet the design 

objective, the proposed system is expected to achieve the 

following design criteria for a typical LEO satellite system: 

overshoot of ≤ 5%, settling time of ≤ 10 seconds, and zero 

steady-state error [1],[15].  

2-1- Mathematical Modelling 

For the closed-loop control system shown in Figure 1, the 

closed-loop model for the yaw-axis ACS, neglecting the 

controller, consists of the amplifier, DC motor, and 

satellite structure components. The mathematical models 

of these components, which comprise the amplifier, DC 

motor, and satellite structure, are derived subsequently.  

2-1-1- Mathematical Model of Amplifier 

The dynamic equation of the amplifier with gain ak is 

defined in terms of the output voltage by [1]: 

a a iV (s) = K V (s)                                                          (1)  

where Va (s) is the amplifier voltage, Ka is the amplifier 

gain, and Vi(s) is the input voltage.  

Hence, the open-loop gain of the amplifier can be 

expressed by Eq. (2). 

a

a

i

V (s)
K  =                                                               (2)

V (s)
 

2-1-2- Mathematical Model of DC Motor 

An armature-controlled DC motor is schematically 

represented in Figure 2. In the figure, DC motor is shown 

to have armature resistance and inductance aR and aL  

respectively, input or armature voltage,
aV , armature 

current aI , and  motor back electromotive force (EMF) of 

bV that make up the electrical component of the motor. 

The mechanical components are the motor moment of 

inertia aJ , damping ratio of the motor Ba, and the motor 

shaft angular position ).(t  

ai (t) aR aL

aV (t)

Electrical Part

Application
of KVL

bV (t) M
θ(t)

Mechanical Part

Application of
dynamic law of

motiona
a

J B

 
Fig. 2 Schematic Diagram or Armature Controlled DC Motor 

Kirchhoff's voltage law (KVL) and dynamic law of motion 

application in the electrical and mechanical parts of the 

DC motor results to Eq. (3), Eq. (4), and Eq. (5) as seen in 

[17],[18]. 

a

a a a a b

dI (t)
V (t) = R I (t) + L  + V (t)                               (3)

dt
 

b b m b

dθ(t)
V (t) = K ω (t) = K                                          (4)

dt
 

m m aT  = K I                                                                     (5)  

where m  is the motor angular speed and is equal to the 

derivation of the motor angular position or displacement, 

bK  is the motor back EMF constant, mT is the motor toque, 

and mK  is the torque constant of the motor. Eq. (5) can 

further be expressed by Eq. (6). 

2

m a a

d θ(t) dθ(t)
T  = J  + B                                        (6)

dt dt
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By substituting Eq. (4) into Eq. (3), Eq. (5), and Eq. (6), 

Eq. (7) and (8) are established. 

a

a a a a b

dI (t) dθ(t)
V (t) = R I (t) + L  + K                   (7)

dt dt
 

2

a a m a

d θ(t) dθ(t)
J  + B  = K I                                  (8)

dt dt
 

Taking the Laplace transform of Eq. (7) and Eq. (8), and 

assuming zero initial conditions gives Eq. (9) and Eq. (10). 

a a a a a bV (s) = L sI (s) + R I (s) + K sθ(s)                     (9)  

2

a a m aJ s θ(s) + B sθ(s) = K I (s)                                (10)  

By equating Eq. (9) and Eq. (10), the armature current was 

eliminated leading to the formulation presented in Eq. (11). 

2

a b a a

a a m

V (s) - K sθ(s) J s θ(s) + B sθ(s)
 =                   (11)

sL + R K
 

The constants bK and mK are usually given as 

b mK K K= = in most DC motor [1]. Therefore, Eq. (11) 

can be expressed in terms of transfer function as the ratio 

of the motor angular position to the armature input voltage 

as presented in Eq. (12). 

2

a a a a a

θ(s) K
 =                 (12)

V (s) s[(J s + B )(L s + R ) + K ]
 

2-1-3- Mathematical Model of Satellite System  

The load torque (TL) due to the torque delivered by the DC 

motor (Tm) and the disturbance torque (Td) as shown in 

Figure 1 is given by Eq. (13). 

L m dT = T  + T                                                          (13)  

The moment of inertia J of the entire system consists of 

the motor moment of inertia aJ and the moment of inertia 

of the satellite structure or body IJ about axis of rotation 

at the center of mass [1]. Given the associated vicious 

friction B of the satellite structure (i.e. the load) and its 

actual angular position  ( )a t  about the yaw-axis, the load 

(satellite) torque assuming   0dT =  is given by Eq. (14): 

2

o o

L m

d θ (t) dθ (t)
T  = T  = J  + B                                 (14)

dt dt
 

The Laplace transform of Eq. (14) assuming zero initial 

condition, is given by Eq. (15). 

2

m 0 0T (s) = Js θ (s) + Bsθ (s)                                       (15)  

The transfer function describing the satellite’s body 

dynamics, specifically the relationship between the actual 

angular position or attitude of the yaw-axis and the input 

motor torque Tm(s), is provided in Eq. (16). 

o

m

θ (s) 1
 =                                                   (16)

T (s) s(Js + B)
 

Table 1 shows the description of the values of the physical 

parameters for amplifier, DC motor, and satellite structure 

of Low Earth Satellite (LEO).  

Table 1: Parameters of the Yaw-axis ACS [1] 

Definition Symbol Value 

Amplifier aK  10 

Motor a constant K 0.01 Nm/A 

Resistance of motor Ra 1 Ω 

Inductance of motor La 0.5 H 

Damping ratio of motor aB  0.01 Kgm2 

Moment of inertia of motor aJ  0.1 Nms 

Moment of inertia of satellite J 2.5 Kg m2 

Damping ratio of satellite B 1.17 Nms 

Substituting the values for the parameters in Table 1 into 

Eq. (2), Eq. (12), and Eq. (16) yields the numerical 

expressions for amplifier transfer function gain, the DC 

motor transfer function, and the satellite body transfer 

function as presented in Eq. (17), Eq. (18), and Eq. (19), 

respectively. 

a

i

V (s)
 = 10                                                               (17)

V (s)
 

3 2

a

3 2

θ(s) 0.01
 = 

V (s) 0.05s  + 0.105s  + 0.0101s

0.2
=                                              (18)

s  + 2.1s  + 0.202s

 

o

2

m

θ (s) 1
 =                                             (19)

T (s) 2.5s  + 1.17s
 

The yaw-axis ACS is represented with a block diagram in 

terms of the transfer function of the amplifier, DC motor, 

satellite body, and unity gain feedback sensor, assuming 

zero torque disturbance, in Figure 3. 
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Adaptive
Controller

oθ (s)
aK = 10

3 2

0.2

s  + 2.1s  + 0.202s 2

1

2.5s  + 1.1s

rθ

Fig. 3 Closed Loop Network of Satellite Yaw-axis ACS with Zero 
Torque Disturbance 

2-2- Design of MRAC Based PIDD Controller 

The yaw-axis ACS for LEO satellite is achieved by 

designing an MRAC based PIDD controller. In designing 

MRAC, many approaches such as Massachusetts Institute 

of Technology (MIT) rule, augmented error theory, and 

Lyapunov theory can be used. Nevertheless, approach 

based on MIT is used in this work. In designing a MRAC, 

it is required that the error and cost function be determined 

as shown as part of this subsection. Figure 4 is the 

proposed MRAC based PIDD controller for yaw-axis 

attitude determination.  

rAttitude, θ
Reference

PIDD Controller

Error, emθReference

LEO Satellite

System

LEO Satellite
System,

u

Adaptation

Mechanism

Model

oθ

Update
Law,

cθ

Fig. 4 The Proposed MRAC-PIDD Control System for LEO Satellite 

Yaw-axis ACS 

2-2-1- Update Law Mechanism 

The update law or the adjustment mechanism is achieved 

from the following mathematical expressions defined as 

follows. 

In starting the development of the adaptation mechanism 

that governs the update law, the deviation (or error) due to 

the difference of the plant response o  and the output 

mod el of the reference model is expressed as in Eq. (20). 

o mError, e = θ  - θ                                                  (20)  

The cost function ( )g cJ  is defined in Eq. (21) in terms of 

e as; 

( ) 2

g c

1
J θ  = e                                                      (21)

2
 

The cost function is minimized such that c can be 

sustained in negative gradient direction of gJ defined by 

Eq. (22).  

c

c c

dθ J e
 = -γ  = γe                                     (22)

dt θ θ

 
−

 
 

The change in 
c  is established by Eq. (22) with respect to 

time so as the cost function can be minimized to zero. 

Also, ce θ  is regarded as the sensitivity derivative [19]. 

It shows the error change with respect to the gain, which is 

a quantity of positive value for the controller's adaptation 

mechanism [20],[21]. A reference model, whose 

performance characteristic the satellite positioning system 

is to follow, is established next, and this forms the design 

objective of the MRAC. 

Assuming the system transfer function is defined as 

( )pKG s where K is a quantity of unknown value and 

( )pG s represents transfer function of the plant. Let an 

expression be defined for the reference model as presented 

in Eq. (23). 

m o pG (s) = K G (s)                                                     (23)  

where oK  is a quantity of known value. Eq. (20) can be 

redefined resulting to Eq. (24). 

p o p cE(s) = KG (s)U(s) - K G (s)U (s)                          (24)  

where ( ) ( )  p oKG s U s = , ( )U s  is the control input to the 

plant, ( ) ( )  o p c mK G s U s = and ( )cU s  the reference 

model input.  

Thus, Eq. (25) defines the control law: 

c cU(s) = θ  × U (s)                                                    (25)  

By substituting Eq. (24) into Eq. (23), a partial derivative 

is applied with the resulting expression defined by Eq. (26) 

p c m

c o

E(s) K
  KG (s)U (s)  θ                           (26)

θ K


= =


 

Equating Eq. (22) and Eq. (26) gives Eq. (27) 

1c

m m

o

dθ K
  γe θ  = γ eθ                                 (27)

dt K
= − −  
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where
1   oK K =  and the update law is represented by 

Eq. (27).  

2-2-2- Determination of the Reference Model  

For an MRAC, it is usually required to define a reference 

model mG (s) . Since the satellite structure is a second-order 

model, in this work, the performance of the entire model 

of the satellite system is constrained to that of a second-

order reference model dynamic and steady-state that will 

meet the stated performance specifications or criteria for 

the yaw-axis ACS. Hence, Eq. (28) defines the reference 

model: 

2

n

m 2 2

n n

ω
G (s)                                  (28)

s  2ζ s  ω
=

+ +
 

where n  is the system natural frequency and ζ is the 

system damping ratio. The determination of the values for 

these quantities is carried out with Eq. (29). 

2πζ  1  ζ

pO e                                                          (29)
− −

=  

where pO  is the peak percentage overshoot of value 2%. 

Solving Eq. (29) gives Eq. (30). 

e

e e
2

5 πζ
log   log                               (30)

100 1 ζ

 
= − 

  −
 

This results in ζ  0.78.=  With the value of the damping 

ratio determined, the natural frequency of the system is 

determined using Eq. (31).   

s

n

4
T  =                                                             (31)

ζω
 

Thus 
1

nω  5.13 rads ,−= Substituting this value into Eq. 

(28) gives Eq. (32). 

m 2

26.32
G (s)                                  (32)

s  8s  26.32
=

+ +
 

Eq. (32) is the designed referenced model. 

 

 

 

2-2-3- Design of PID and PIDD Controllers  

Figure 5 shows a simplified structure of PID control 

system used to achieve three-term process control.   

y(t)

iK

pK

dK

r(t) e(t)

t

0

e(t)dt

de(t)

dt

u(t)
Plant

Fig. 5 PID Control System Representation 

The mathematical expression of PID controller can be 

determined by analyzing Figure 5. Hence, ( ),r t ( ),e t  and 

( )u t represents the desired input, error and the control 

command. Furthermore, , ,p i dK K K  are the gains of the 

PID controller: proportional gain, integral gain, and 

derivative gain. The output ( )y t is related to ( )r t by Eq. 

(33). 

e(t)  r(t)  y(t)                                                     (33)= −  

The proportional, integral and derivative computation 

carried on the error as it is fed into the PID controller 

results to a control action given by Eq. (34). 

t

p i d

0

de(t)
u(t) = K e(t)  K e(t)dt  K                  (34)

dt
+ +  

Eq. (34) is a PID control variable in time domain. Thus, 

the Laplace transform of PID control variable assuming 

zero initial condition is given by Eq. (35). 

p i d

1
U(s)  K E(s)  K E(s)  K sE(s)               (35)

s
= + +  

Or in a more simplified form as presented in Eq. (36): 

p i d

1
C(s)  K   K   K s                                   (36)

s
= + +  

where, ( )  ( ) ( )C s U s E s=  and is the PID controller. The 

gains of the PID controller obtained by tuning the 
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MATLAB/Simulink PID block are [specific gains]. Thus, 

the designed PID controller is given by Eq. (37). 

0.0215
C(s)  1.98    1.85s                         (37)

s
= + +  

PID controllers typically introduce overshoot in control 

systems, which is addressed by adding an extra D element 

in this work. Hence, PIDD is a modified PID controller 

with extra D element and it is given by [22]: 

 

2

p i d1 d2

1
C(s)  K   K   K s  K s                    (38)

s
= + + +  

where ( )  ( ) ( )C s U s E s=  and is the PID controller. The 

gains of the PID controller obtained by tuning the 

MATLAB/Simulink PID block are [specific gains]. 

Therefore, the designed PIDD controller is given by Eq. 

(39): 

20.0115
C(s)  1.98    1.85s  1.85s         (39)

s
= + + +  

2-3- Design of Fuzzy Logic Controller 

In designing an FLC, the components involved are 

fuzzification, defuzzification, rule base, and interference 

mechanism. Decision making is performed by the 

interference mechanism. Figure 6 is a block diagram of 

fuzzy logic control of satellite yaw-axis ACS.  

F
u
zz

if
ic

at
io

n

D
ef

u
zz

if
ic

at
io

n

Inference

Mechanism

Rule Base

Control InputSetpoint

Attitude

Fuzzy Logic Controller

Actual

Attitude

Satellite
System

Feedback

Mechanism

E
rr

o
r,

 e
(t

)

Fig. 6 Fuzzy Control System Representation 

Fuzzification is performed, which involves transforming a 

crisp fuzzy input set into linguistic variables. The input 

sets or variables in this case are the error E and the change 

in error (ΔE). Proper scaling factors were used to scale the 

error and change in error for the yaw-axis attitude. The 

resulting linguistic variables from the fuzzification are 

negative big (NB), negative medium, negative small (NS), 

zero (ZO), positive small (PS), positive medium (PM), and 

positive big (PB). The corresponding fuzzy logic control 

rule table is shown in Table 2. For the designed FLC, each 

input has 3 membership functions (MFs) while the output 

has 5 MFs.  
Table 2: Rule Base Table of the FLC 

E/E NE ZO PO 

NE NB NM ZO 

ZO NM ZO PM 

PO ZO PM PB 

The designed FLC was realized using the Mamdani model 

in MATLAB/Simulink environment. Centroid was used 

for the purpose of defuzzification. The inputs and outputs 

were modelled using the triangular MF. The resulting 

shapes of the triangular MFs are shown in Figure 7. The 

Simulink model for the designed FLC control system is 

shown in Figure 8. The output of the developed fuzzy 

model was enhanced by an adjustable gain to improve its 

performance as in [6]. This is called Adjustable Gain 

Enhanced FLC (AGE-FLC). 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Triangular MFs: (a) Error (b) Change in Error (c) Output 
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Fig. 8 Simulink Model of the Fuzzy Logic Controlled ACS 

3- Results and Discussion 

3-1- Analysis of the System without Controller 

In this scenario, simulation analysis was conducted to 

investigate the performance of the microsatellite yaw axis 

attitude in the absence of a controller. That is no controller 

was introduced as a subsystem in the attitude control 

system (ACS) so as to ensure the stabilization of the 

satellite yaw angle and tracked the desired yaw-axis 

attitude while ensuring that the system performance 

criteria that include rapid convergence (that is reaching 

steady state as fast as possible, which is defined by the 

settling time in second) with little or no cycling (defined in 

terms of peak overshoot in percentage) are met. The 

resulting step response of the uncompensated satellite 

yaw-axis ACS (Sys1) is shown in Figure 9. The numerical 

analysis of the step response curve is shown in Table 3. 

Table 3: Time Domain Characteristics of System Without Controller 

Step Response Parameter Value 
Rise time 2.17 s 
Transient time 22.14 s 
Settling time 22.14 s 
Peak overshoot 38.66% 
Final value 0.89 
Steady state error 0.11 

 
Fig. 9 Step Response of System without a Controller 

Considering the step response shown in Figure 9, the 

numerical analysis as shown in Table 3 revealed that in the 

absence of a control algorithm, the system has a transient 

and steady-state that is characterized by rise time of 2.17 

seconds, transient time and settling time 22.14 seconds 

respectively, peak overshoot of 38.66%, final value of 0.89 

degree, and steady state error of 0.11. As shown in Figure 

9, the curve reveals that in the absence of a controller, the 

system fails to achieve the desired attitude and suffers 

from high instability, which can be attributed to the 

magnitude or size of the overshoot. Therefore, there is a 

need to design a controller for on-orbit flight performance 

improvement in terms of yaw angle stability with 

significantly reduced overshoot or zero overshoot. 

3-2- Analysis of PID/PIDD Control System 

The simulation analysis of the PID and the PIDD 

controllers applied to the LEO satellite yaw axis attitude 

control system is presented in this section. Figure 10 

shows the step response curves of the PID and the PIDD 

controllers. Table 4 shows the numerical analysis of the 

performance of the control system scenario considered 

using PID or PIDD controllers. 

Table 4: Time Domain Characteristics of PID/PIDD 

Step Response Parameter PID PIDD 

Rise time (s) 1.93 4.26 

Transient time (s) 7.97 8.34 

Settling time (s) 7.97 8.34 

Peak overshoot (%) 12.00 0.00 

Final value 1.00 1.00 

Steady state error 0.00 0.00 
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Fig. 10 Step Response of PID/PIDD Control System 

Looking at Figure 10 and Table 4, it can be deduced that 

the PID control system showed better performance in 

terms of rise time and settling time than the PIDD control 

system. However, in terms of overshoot (or stability 

performance), the PIDD controller outperformed the PID 

controller. Though the PID control system showed good 

performance in terms of rise time and settling time, it did 

not meet all the performance criteria required of the 

control system, specifically the overshoot, which is 12% 

(i.e. > 5%). On the other hand, the PIDD control system 

meets the designed requirement for both settling time and 

overshoot: 8.34 seconds (i.e. < 10 seconds) and 0.01% (i.e. 

< 5%). 

3-3- Analysis of the MRAC-PID/MRAC-PIDD 

Control System 

The performances of the adaptive PID and the adaptive 

PIDD control systems used for the control of the yaw-axis 

attitude of the LEO satellite are presented in this 

subsection. The step response curves and the table of the 

numerical values obtained from the simulation analysis 

conducted in MATLAB/Simulink environment with 

respect to the designed MRAC-PID and MRAC-PIDD 

yaw-axis ACS for LEO satellite are presented in Figure 11 

and Table 5. 

Table 5: Time Domain Characteristics of MRAC Based Control System 

Step Response Parameter MRAC-PID MRAC-PIDD 

Rise time (s) 1.74 4.28 

Transient time (s) 6.19 8.95 

Settling time (s) 6.19 8.95 

Peak overshoot (%) 3.94 0.00 

Final value 1.00 1.00 

Steady state error 0.00 0.00 

 
Fig. 11 Step response of MRAC-PID/MRAC-PIDD Control System 

The step response curves in Figure 11 revealed that the 

MRAC-PID still exhibits slight oscillation though the 

design or performance criteria was achieved by both 

control systems. As shown in Table 5, the MRAC-PID 

yielded faster response and better convergence time in 

terms of rise time and settling time than the MRAC-PIDD. 

However, the MRAC-PIDD showed more smooth and 

stable performance than the MRAC-PID, which is an 

indication of better control torque during the operation of 

the satellite [2]. 

3-4- Analysis of Fuzzy Logic Control System 

The performances of the developed FLC and its enhanced 

type (AGE-FLC) are presented in Figure 12 and Table 6. 

The simulation curves in Figure 12 reveal the step 

response performance of the FLC and the AGE-FLC with 

the gain K varied between 0.70 ≤ K ≤ 0.90 for optimal 

response efficiency. 

 
Fig. 12: Step Response of FLC/AGE-FLC Control System 

Table 6: Time Domain Characteristics of FLC Based Control System 
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Step Response Parameter FLC 
AGE-FLC 

(K = 0.7) 

AGE-FLC 

(K = 0.75) 

AGE-FLC 

(K = 0.8) 
AGE-FLC 

(K = 0.85) 

AGE-FLC 

(K = 0.9) 

Rise time (s) 3.33 4.50 4.23 4.26 3.81 3.64 

Transient time (s) 9.52 7.01 8.18 8.32 7.87 7.67 

Settling time (s) 9.52 7.01 8.18 8.32 7.87 7.67 

Peak overshoot (%) 21.97 1.73 2.51 0.00 4.43 5.23 

Final value 1.00 1.00 1.00 1.00 1.00 1.00 

Steady state error 0.00 0.00 0.00 0.00 0.00 0.00 

 

As shown in Figure 12 and Table 6, the FLC showed the 

best performance in terms of rise time, but give the worst 

performance with respect to settling time and overshoot. 

Among the AGE-FLCs, it can be seen that all met the 

performance criteria stated for the LEO satellite except 

when the gain was equal to 0.9. Thus, for optimal 

performance using the developed AGE-FLC for the LEO 

satellite yaw-axis ACS, the adjustable gain should be 

tuned between 0.7 and 0.85. Since stability is of utmost 

priority for orbiting satellites in space, the best 

performance is offered by AGE-FLC when K = 0.8 

because it offers an overshoot of zero. It also offered 

smoother and more stable torque control performance [2]. 

Hence, amongst the AGE-FLCs, the method for K = 0.8 

was used for comparison with other control systems 

implemented for the LEO satellite yaw-axis ACS. 

3-5- Performance Comparison of Control Systems 

In this section, the various control schemes implemented 

were compared as by the step response of the yaw-axis 

attitude in degree shown in Figure 13. 

 
Fig. 13 Step response comparison of control systems 

Among the control systems, the FLC shows the worst 

performance in terms of settling time and overshoot. Also, 

of all the control systems, only the PID and the FLC 

controllers did not meet the stated performance criteria 

considering their overshoots. The MRAC-PID controller 

offered the fastest response (in terms of rise time) and 

fastest transient time (settling time) compared to other 

control strategies. Thus, MRAC-PID provides the shortest 

time reach stability compare to other controllers. However, 

the MRAC-PID has an overshoot associated with its 

response. On the other hand, using the PIDD, MRAC-

PIDD, or the AGE-FLC (K = 0.8) control system revealed 

that each of them effectively prevents oscillation or 

fluctuation of the control torque, considering the no 

overshoot they offered [2]. Hence, by this performance, 

the PIDD, MRAC-PIDD, and the AGE-FLC control 

systems provided the best performance in smoothness and 

stability.  

Now, considering the settling times and overshoots of the 

PIDD, MRAC-PIDD, and the AGE-FLC with respect to 

the performance criteria established, it suffices to say that 

AGE-FLC provided the best performance by providing the 

fastest transition to stable state (steady-state) with no 

fluctuation in torque control handling. Generally, in terms 

of overall performance for meeting the stated design or 

performance criteria: overshoot of less than or equal to 5% 

and settling time of less than or equal to 10 seconds, the 

adaptive PID controller outperformed both the 

conventional PID and FLC controllers. This agrees with 

the experimental observation wherein adaptive PID 

offered the most performance compared to conventional 

PID and FLC for nanosatellite ACS in [11]. 

4- Conclusions 

In this paper, adaptive controllers (MRAC-PID and 

MRAC-PIDD) and AGE-FLC have been developed for 

LEO satellite yaw-axis attitude control system (ACS). For 

the objective of the study to be achieved, the dynamic 

equations describing the yaw-axis attitude of a LEO 

satellite were derived. The dynamic equations were then 

modelled using Simulink embedded blocks in MATLAB. 

Each of the model components shows different features of 

Simulink, including transfer function block, gain block, 

PID block, and fuzzy logic block. MRAC-based 

PID/PIDD controllers and an AGE-FLC were developed. 
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The designed control systems were modelled and 

simulated in the MATLAB/Simulink environment. The 

results from the simulation revealed that the proposed 

controllers met the performance specifications of the LEO 

satellite yaw-axis ACS, given as overshoot of ≤ 5% and 

settling time of  ≤ 10 seconds and zero steady-state error. 

Notably, the MRAC-PIDD and the AGE-FLC provided 

negligible overshoot. This indicated that stabilization was 

effectively achieved and both controllers offered 

smoothness in control torque during the satellite operation. 

Generally, considering the time domain characteristic of 

the system response without a controller, it suffices to say 

that the introduction of the designed adaptive PID/PIDD 

controllers and the AGE-FLC largely enhanced the system 

performance by offering settling time less than 10 seconds 

and overshoot very much less than 5%. Thus, the proposed 

controllers met the design criteria for a typical LEO 

satellite system. In future work, it is recommended to 

integrate the PID algorithm with the FLC. Other intelligent 

control techniques, such as swarm algorithms or machine 

learning models, can be implemented with PID to reduce 

the settling time further. Other control system scenarios 

should be studied regarding the evaluation of the control 

systems with disturbance torque. 
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