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Abstract

In this study, a K-Nearest Neighbor (KNN) classifier is employed for fabric defect identification. First, directional Grey-
Level Co-occurrence Matrix (GLCM) of the fabric image is computed in , and 90" directions. Six intensity-based features
are then extracted from these directional GLCMs. In addition, the minimum, maximum, median, and mean grey levels of
the fabric image are computed. These sixteen features are combined into a single feature vector representing the fabric
image. Next, Principal Component Analysis (PCA) is applied to reduce the dimensionality of the feature vector. The
reduced features are then classified using the KNN classifier, categorizing each fabric image as either defective or defect-
free based on training data. To localize defects, patches containing defects are segmented from the original fabric image.
Features of these defect patches are extracted, reduced via PCA, and classified using KNN. Finally, each defect class is
identified, and defect locations are visualized using morphological operations. The proposed method is evaluated on the
comprehensive TILDA dataset, which contains 3,200) fabric images (both defective and defect-free). Experimental results

demonstrate a mean average accuracy of 95.65% for fabric defect identification across classes C,, C,, and C;.
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1- Introduction

A fabric defect refers to a flaw on the surface of a fabric
caused by issues in the manufacturing process. In textile
quality control, fabric defect identification is crucial for
maintaining product standards [1]. To date, over 70 types
of fabric defects have been documented in textile
manufacturing [2]. The presence of defects can reduce
fabric value by 45-65% [2].

Traditionally, defect identification has relied on human
visual inspection [2], which suffers from limited accuracy;
typically ranging between 60-75% [3]. As a result, manual
inspection is inefficient and unreliable for long-term use
[1]. Therefore, automatic fabric defect identification based
on computer vision techniques is increasingly important
for quality control in textile production [4].

Compared to manual methods, automatic fabric defect
identification offers higher accuracy, reduced costs, and
increased robustness in production lines [3]. However,
due to the wide variety of defect types, accurately
classifying fabric defects remains a challenging task [4].
Recently, deep learning-based approaches have achieved
promising results in fabric defect identification. However,
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their performance heavily depends on large volume of
labelled data [5]. Since labelling fabric defects is time-
consuming and expensive for textile factories, using
supervised learning methods that do not rely on deep
learning can reduce this burden. Thus, developing efficient,
accurate, and lightweight methods remains a key research
goal [6].

In this study, we propose an automatic method based on
the K-Nearest Neighbor (KNN) classifier to identify
defects in both plain and patterned fabrics. First, the
directional Grey-Level Co-occurrence Matrix (GLCM) of
the fabric image is computed in 0°, and90° orientations.
From these GLCMs, six intensity features are extracted.
Additionally, the minimum, maximum, median, and mean
grey levels of the image are calculated. These sixteen
features are concatenated into a single feature vector of
size of 1x16. Principal Component Analysis (PCA) is then
applied to reduce the dimensionality of the feature vector.
The reduced features are subsequently classified using the
KNN algorithm to categorize the image as either defective
or defect-free.

To localize defects within defective images, defect patches
are first segmented. Features from these patches are
extracted, reduced using PCA, and classified via KNN.
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Finally, the type and position of each defect are
determined and visualized using morphological operations.
The proposed method is evaluated on the comprehensive
TILDA dataset, which includes 3,200 fabric images
(defective and defect-free). Experimental results show a
mean average accuracy of 95.65% for defect identification
across 1,390 images in classes C,, C, , and C; of the

dataset.

The main innovation of the proposed method lies in
achieving high classification accuracy; 95.65%, on the
TILDA dataset using only PCA and KNN, without relying
on any deep or non-deep neural network models. As a
result, the proposed method is suitable for real world
applications in fabric defect inspection. However, it is not
effective for detecting defects in a randomly patterned
fabrics, as demonstrated by lower performance in such
cases within the TILDA dataset.

The remainder of this paper is organized as follows:
Section 2 reviews related work in fabric defect
identification. Section 3 presents the proposed
methodology. Section 4 reports experimental results and
comparisons with existing methods. Finally, Section 5
concludes the study.

2- Past Methods

Several methods have been proposed for fabric defect
identification, ranging from traditional image processing
to deep learning techniques. This section reviews a
selection of these approaches and their reported
performance.

An unsupervised learning method [1] identified fabric
defects by reconstructing image patches at multiple levels
of a Gaussian pyramid. The reconstruction residuals were
used for defect prediction, yielding a maximum
identification accuracy of 85.20% on 128 fabric images.
However, the dataset did not include all defect types. A
patch-based method [2] extracted local fabric image
patches, which were then labelled and fed into a pre-
trained deep convolutional neural network. Defects were
localized by scanning the image with the trained model.
This method achieved an accuracy of 97.20% on 300 non-
randomly patterned fabric images from the TILDA dataset.
A comprehensive survey [3] reviewed existing fabric
defect identification algorithms and datasets, comparing
identification accuracy and real-time performance. Auto-
encoder networks [4] were trained using a loss function on
Structural Similarity Index Measurement (SSIM). Defect
identification was performed using SSIM residual maps.
Identification accuracies of 92.70%, 79.80%, and 93.10%
were reported for classes C;, C,, and C, of the TILDA

dataset, with no results provided for class C,. A multi-
task mean teacher approach [5] was presented to

simultaneously identify the defect area, contour, and
distance map. Supervised and consistency losses were
applied to labeled and unlabeled data, respectively,
resulting in a mean accuracy of 87.77% on TILDA fabric
images. A weighted double low-rank decomposition
technique [6] located defects by identifying homogeneous
regions with high correlation. This method achieved a
mean accuracy of 90.66% on 250 plain fabric images from
the TILDA dataset. A method based on Elliptical Gabor
filter (EGF) [7] used a particle swarm optimization
algorithm to determine EGF parameters from a defect-free
template image. Defect identification was performed by
convolving the sample image with the EGF, achieving
96.30% accuracy on 195 images from the Standard Fabric
Defect Glossary dataset. Another approach [8] targeted
defect identification in patterned fabrics. Defective blocks
were segmented using pattern periodic distance, and
compared to a dictionary of features from defect-free
blocks. Distance metrics and thresholding were used to
identify defects, with accuracy exceeding 95%. An
enhanced YOLOV4 architecture [9] incorporated the Soft-
Pool layer within the Spatial Pyramid Pooling (SPP)
structure. Adaptive histogram equalization was also
applied to enhance image quality. Using a dataset that
combined Aliyun-FD-10500, Kaggle images, and real
photographs, the method achieved a mean accuracy of
86.44%, an improvement of 6% over standard YOLOv4.
A DenseNet-based edge detection algorithm [10] used an
optimized cross-entropy loss and six enhancement designs
to improve feature representation. The method
outperformed conventional CNNs, improving the area
under the curve (AUC) by 18% across 11 defect types. A
method using direction templates and image pyramids [11]
was presented for identifying defects in color and
periodically patterned fabrics. A stacked de-noising auto-
encoder reconstructed the image from blocks sampled in
the pyramid representation. Defective blocks were
identified using SSIM, resulting in a mean accuracy of
69.68% on TILDA fabric images. Two CNN-based
structures [12] were presented for jacquard-patterned
fabrics. One used CNNs for defect identification on
isolated patterns, while the other applied integrated state-
of-the-art CNNs to the entire dataset. The multispectral
dataset included RGB and near-infrared images, which
were preprocessed using adaptive histogram equalization.
A saliency-based method [13] identified defects by
estimating the membership degree of each defect region.
Iterative thresholding and morphological operations were
used, achieving a mean identification accuracy of 95.48%
on various experimental images. A CNN model [14] was
designed to learn defect features from only 50 labeled
samples. Initially, the model was applied without training
to generate raw outputs, which were later used for
supervised learning. Experiments on four fabric datasets
with different textures achieved a mean accuracy of
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95.89%. A dictionary learning-based method [15] first
segmented a defect-free fabric image to build a joint
matrix, from which a random dictionary was created.
Orthogonal matching pursuit and k-SVD (k singular value
decomposition) were applied to learn  sparse
representations. Defect identification was based on
reconstruction error and adaptive thresholding, achieving
93.63% mean accuracy on TILDA classes C,,C,, and C,.

A method for nonwoven fabric defect identification [16]
was presented using the LL-YOLOvV5 network, which
incorporated the LSK and Light-RepGFPN modules.
These modules enhanced small defect identification and
feature fusion. The model achieved a mean accuracy of
90.30% on a hyperspectral nonwoven fabric dataset,
outperforming standard YOLOvS by 2.2%. A Color
Conversion Network (CCN) [17] converted RGB images
into an optimized color space to better distinguish defects
from normal patterns. A contrastive loss function
maximized the separation between defect and non-defect
features. A complementary adversarial structure, CASDD
[18], combined an encoder—decoder module with dual
discriminators for identifying texture defects. Edge
detection blocks were integrated into convolutional layers,
while two discriminators focused on key features and edge
differences to improve boundary identification. A YOLO-
SCD network [19] used an attention mechanism to
enhance feature representation in the neck of the model. It
achieved a mean accuracy of 82.92%, improving YOLOv4
performance by 8.49%. Finally, a network incorporating a
parallel dilated attention module [20] and a feature
pyramid network was introduced to capture multiscale
contextual information. Alpha-GloU loss was used to
refine bounding box regression. Additionally, a dual
attention module, self-enhanced (SE) and cross-enhanced
(SE), was developed [21] to enrich contextual and inter-
layer feature representations for improved prediction
accuracy.

3- Proposed Method

The steps of the proposed method are illustrated in Fig. 1.
Each fabric image is selected from the TILDA dataset and
has a resolution of 400x400 pixels. First, the GLCM of the
input image is calculated in 0" and 90° orientations. From
each matrix, six features are extracted using Equations (1)
to (6). The feature defined in Equation (1) captures the

scattering of grey levels around the mean intensity.
Ny—1N, -1

> 2 (i-u) C(i.)) (1)

i=0 j=0

Where u, C(i, j), and N, are respectively mean, GLCM

member at (i, j) , and a number of grey levels of the image.
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Fig. 1 Flowchart of the proposed method

The feature defined in Equation (2) shows the spreading of

sum of grey levels around the mean intensity.
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The feature defined in Equation (3) shows the mean

distribution of the sum of grey levels.
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The feature defined in Equation (4) shows the irregularity
of difference distribution of the image intensities.

_]tg_zol C..,(i)log(C,_, (i) 4)

The feature defined in Equation (5) shows the maximum
of the GLCM members.

Max, ; C(i, ) ®)

The feature defined in Equation (6) shows the
homogeneity of the grey levels distribution.
N, N, C(l,])
— (6)
i=1 j=1 1+(l—])

In addition to GLCM features, four statistical intensity
features, minimum, maximum, median, and mean are
computed from the original image.

4- Results and Comparisons

4-1- TILDA Database

TILDA database [27] is a comprehensive database
commonly used for evaluating fabric defect identification
algorithms. It contains 3,200 images across four classes,
including various types of simple and patterned designs.
The proposed method was implemented and tested on this
dataset. The C, class has simple fabrics with a narrow

structure. The C, class has simple fabrics with a random
structure. The C; class has periodical structured fabrics.

The C, class has fabrics with randomly patterns.

4-2- Evaluation Criteria

Four standard evaluation metrics, defined by Equations (7)
to (10) [27], are used to assess the performance of the
proposed method.

TP
Sensitivity (Sens.) = ——— 7
v ) TP+ FN 7
N
Specificity (Spec.) = ——— 8
pecificity (Spec.) NP ®)
Accuracy = IP+1N ©)
TP+TN + FP+FN
False Rate (FR) = — L L+ IV (10)
TP+TN + FP+ FN

Where TP shows true defect identification, which
indicates only the pixels with defect are white in the
identification result. Both TN and FP show no white
pixels in the identification result of the free defect image.
FN shows no white pixels in the identification result of
the defective image.

4-3- Validation

The simulation of the proposed method is done by
MATLAB 2019 with 64 bit and operating system of the
Windows 7. It is implemented on a system based on the
Intel(R) core (TM) i3-2350 CPU @2.3 GHz, 4GB RAM.

Several results for C, are shown in Table 1. Two groups of
designs in C, are C;7; and C,r, . 200 images of Cr, are
defective and 50 images are non-defective. 160 images of
Cr, are defective and 50 images are non-defective. The

results in Table 1 report the high mean accuracy of the
proposed method for defect identification in C, .

Table 1: Defect identification results of the proposed method for C,

Class Sens. Spec.
Cr, 90.14% | 91%
Cr, 87.94% | 100%

Accuracy FR
92.10% | 7.90%
91.72% | 8.28%

Several results for C, are shown in Table 2. Two groups
designs in C, are C,r, and C,r; . 200 images of C,#, are
defective and 50 images are non-defective. 200 images of
C,r, are defective and 50 images are non-defective. It has

to be noticed that black holes are randomly placed in the
images background of C,, that should not be identified as

the defects. The results in Table 2 report the high mean
accuracy of the proposed method for defect identification
in C,.

Table 2: Defect identification results of the proposed method for C,

Class Sens. Spec.
C,r, 100% | 100% 100% 0%
C,r, 97.60% [ 100% [ 98.89% | 1.11%

Accuracy FR

Several results for C; are shown in Table 3. Two groups
designs in C, are C,1; and C,7,. 170 images of C,7 are

defective and 50 images are non-defective. 160 images of
C,r, are defective and 50 images are non-defective. The

results in Table 3 illustrate that the defect identification in
C, is more difficult than that on C,, because of various

grey levels in the background of the patterned fabric
images inC; .

Table 3: Defect identification results of the proposed method for C,

Class Sens. | Spec.
C,r; | 94.79% | 100%
C,r, 93.42% | 100%

3

Accuracy FR
96.53% | 3.47%
94.67% | 5.33%

4-4- Visual Results
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The proposed method several visual results for C,, C,, and
C, are respectively shown in Fig. 2, 3, and 4. In Fig. 2,
images in rows 1 to 2 are from C,#, , and images in rows 3

o

Fig. 2 Several fabric defect identification results for C,z; (rows 1 to 2)

and Cr; (rows 3 to 4) by the proposed method

to 4 are from C\r;. In Fig. 3, images in rows 1 to 2 are from
C,r, , and images in rows 3 to 4 are from C,r, . In Fig. 4,
images in rows 1 to 2 are from C,7;, and images in rows 3
to 4 are from C,r, .

In some images, defects are highly camouflaged within the
fabric background, leading to misidentification. Examples
of such cases are shown in Fig. 5. Additionally, no results
are reported for fabrics with random patterns, as the
proposed method performs poorly on this category.

Nouri, Mohanna & Boluki, Author Guide Fabric Defect Identification based on KNN and PCA Algorithms

Fig. 3 Several fabric defect identification results for C,r, (rows 1 to 2)
and C,r; (rows 3 to 4) by the proposed method

4-5- Comparisons

Several state-of-the-art methods were implemented and
evaluated on the TILDA dataset for comparison. Table 4
summarizes the mean defect identification accuracy of
each method. While some advanced models achieve
slightly higher accuracy, they often rely on deep learning
and require complex architectures or large amount of
labeled data. In contrast, the proposed method is simple,
interpretable, and easy to implement, yet achieves high
accuracy for most fabric types, expect randomly
patterned fabrics.
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i

Fig. 4 Several fabric identification results for Cr; (rows 1 to 2) and C,r,

(rows 3 to 4) by the proposed method

9

Fig. 5 Two samples of defects fade into the fabric background, leading

to misidentification

Table 4: Defect identification mean accuracy of the proposed method
compared with a several state-of-the-art methods on the TILDA

Method Mean Accuracy
[2] 93.70%
[4] 94.95%
[5] 90.62%
[6] 89.86%
[7] 93.84%
[9] 94.37%
[8] 95.75%

[11] 95.25%
[13] 95.68%
[14] 95.30%
[19] 91.97%
Proposed 95.65%

5- Conclusions

This study introduced a simple, supervised method for
accurate and reliable fabric defect identification using the
KNN classifier and PCA. By reducing the dimensionality
of the feature vectors. The proposed method achieves
lower memory usage and computational cost, making it
suitable for real-time applications.

Extensive experiments on the comprehensive TILDA
dataset (3,200 images across four classes) demonstrated
the effectiveness of the approach. While the method was
not evaluated on fabrics with random patterns, it achieved
high identification accuracy on simple and non-random
patterned fabrics.

Specifically, the proposed method achieved mean
identification accuracies of 91.91% for class C,, 99.44%

for class C, , and 95.60% for class C, . The lower

2
performance in class C, is attributed to the narrow and less

distinguishable textures in simple fabrics. The overall
average accuracy across classes C,to C,is 95.65%.

The key innovation of this work is achieving competitive
accuracy without using any deep or non-deep neural
network models, relying solely on classical machine
learning techniques (PCA and KNN). As a result, the
method is well-suited for real-world applications where
simplicity, interpretability, and resource efficiency are
critical. However, the current method is not applicable to
fabrics with random patterns, as the identification accuracy
is insufficient for practical use in such cases.
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Given its performance on the TILDA dataset, the method
is expected to generalize well to other fabric datasets,
provided the fabrics have simple or regular patterns.
Future work will focus on extending the method to handle
random patterns and more complex fabric structures.
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