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Abstract  
In this study, a K-Nearest Neighbor (KNN) classifier is employed for fabric defect identification. First, directional Grey-

Level Co-occurrence Matrix (GLCM) of the fabric image is computed in , and 90 directions. Six intensity-based features 

are then extracted from these directional GLCMs. In addition, the minimum, maximum, median, and mean grey levels of 

the fabric image are computed. These sixteen features are combined into a single feature vector representing the fabric 

image. Next, Principal Component Analysis (PCA) is applied to reduce the dimensionality of the feature vector. The 

reduced features are then classified using the KNN classifier, categorizing each fabric image as either defective or defect-

free based on training data. To localize defects, patches containing defects are segmented from the original fabric image. 

Features of these defect patches are extracted, reduced via PCA, and classified using KNN. Finally, each defect class is 

identified, and defect locations are visualized using morphological operations. The proposed method is evaluated on the 

comprehensive TILDA dataset, which contains 3,200) fabric images (both defective and defect-free). Experimental results 

demonstrate a mean average accuracy of 95.65% for fabric defect identification across classes 1C , 2C , and 3C .    
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1- Introduction 

A fabric defect refers to a flaw on the surface of a fabric 

caused by issues in the manufacturing process. In textile 

quality control, fabric defect identification is crucial for 

maintaining product standards [1]. To date, over 70 types 

of fabric defects have been documented in textile 

manufacturing [2]. The presence of defects can reduce 

fabric value by 45-65% [2].  

Traditionally, defect identification has relied on human 

visual inspection [2], which suffers from limited accuracy; 

typically ranging between 60-75% [3]. As a result, manual 

inspection is inefficient and unreliable for long-term use 

[1]. Therefore, automatic fabric defect identification based 

on computer vision techniques is increasingly important 

for quality control in textile production [4].  

Compared to manual methods, automatic fabric defect 

identification offers higher accuracy, reduced costs, and 

increased robustness in production lines [3].  However, 

due to the wide variety of defect types, accurately 

classifying fabric defects remains a challenging task [4].  

Recently, deep learning-based approaches have achieved 

promising results in fabric defect identification. However, 

their performance heavily depends on large volume of 

labelled data [5]. Since labelling fabric defects is time-

consuming and expensive for textile factories, using 

supervised learning methods that do not rely on deep 

learning can reduce this burden. Thus, developing efficient, 

accurate, and lightweight methods remains a key research 

goal [6].  

In this study, we propose an automatic method based on 

the K-Nearest Neighbor (KNN) classifier to identify 

defects in both plain and patterned fabrics. First, the 

directional Grey-Level Co-occurrence Matrix (GLCM) of 

the fabric image is computed in 0 , and 90  orientations. 

From these GLCMs, six intensity features are extracted. 

Additionally, the minimum, maximum, median, and mean 

grey levels of the image are calculated. These sixteen 

features are concatenated into a single feature vector of 

size of 1×16. Principal Component Analysis (PCA) is then 

applied to reduce the dimensionality of the feature vector. 

The reduced features are subsequently classified using the 

KNN algorithm to categorize the image as either defective 

or defect-free.   

To localize defects within defective images, defect patches 

are first segmented. Features from these patches are 

extracted, reduced using PCA, and classified via KNN. 
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Finally, the type and position of each defect are 

determined and visualized using morphological operations.  

The proposed method is evaluated on the comprehensive 

TILDA dataset, which includes 3,200 fabric images 

(defective and defect-free). Experimental results show a 

mean average accuracy of 95.65% for defect identification 

across 1,390 images in classes
1C ,

2C , and 
3C of the 

dataset.  

The main innovation of the proposed method lies in 

achieving high classification accuracy; 95.65%, on the 

TILDA dataset using only PCA and KNN, without relying 

on any deep or non-deep neural network models. As a 

result, the proposed method is suitable for real world 

applications in fabric defect inspection. However, it is not 

effective for detecting defects in a randomly patterned 

fabrics, as demonstrated by lower performance in such 

cases within the TILDA dataset.  

The remainder of this paper is organized as follows: 

Section 2 reviews related work in fabric defect 

identification. Section 3 presents the proposed 

methodology. Section 4 reports experimental results and 

comparisons with existing methods. Finally, Section 5 

concludes the study.  

2- Past Methods 

Several methods have been proposed for fabric defect 

identification, ranging from traditional image processing 

to deep learning techniques. This section reviews a 

selection of these approaches and their reported 

performance. 

An unsupervised learning method [1] identified fabric 

defects by reconstructing image patches at multiple levels 

of a Gaussian pyramid. The reconstruction residuals were 

used for defect prediction, yielding a maximum 

identification accuracy of 85.20% on 128 fabric images. 

However, the dataset did not include all defect types. A 

patch-based method [2] extracted local fabric image 

patches, which were then labelled and fed into a pre-

trained deep convolutional neural network. Defects were 

localized by scanning the image with the trained model. 

This method achieved an accuracy of 97.20% on 300 non-

randomly patterned fabric images from the TILDA dataset. 

A comprehensive survey [3] reviewed existing fabric 

defect identification algorithms and datasets, comparing 

identification accuracy and real-time performance. Auto-

encoder networks [4] were trained using a loss function on 

Structural Similarity Index Measurement (SSIM). Defect 

identification was performed using SSIM residual maps. 

Identification accuracies of 92.70%, 79.80%, and 93.10% 

were reported for classes 1C , 2C , and 3C of the TILDA 

dataset, with no results provided for class 4C . A multi-

task mean teacher approach [5] was presented to 

simultaneously identify the defect area, contour, and 

distance map. Supervised and consistency losses were 

applied to labeled and unlabeled data, respectively, 

resulting in a mean accuracy of 87.77% on TILDA fabric 

images. A weighted double low-rank decomposition 

technique [6] located defects by identifying homogeneous 

regions with high correlation. This method achieved a 

mean accuracy of 90.66% on 250 plain fabric images from 

the TILDA dataset. A method based on Elliptical Gabor 

filter (EGF) [7] used a particle swarm optimization 

algorithm to determine EGF parameters from a defect-free 

template image. Defect identification was performed by 

convolving the sample image with the EGF, achieving 

96.30% accuracy on 195 images from the Standard Fabric 

Defect Glossary dataset. Another approach [8] targeted 

defect identification in patterned fabrics. Defective blocks 

were segmented using pattern periodic distance, and 

compared to a dictionary of features from defect-free 

blocks. Distance metrics and thresholding were used to 

identify defects, with accuracy exceeding 95%. An 

enhanced YOLOv4 architecture [9] incorporated the Soft-

Pool layer within the Spatial Pyramid Pooling (SPP) 

structure. Adaptive histogram equalization was also 

applied to enhance image quality. Using a dataset that 

combined Aliyun-FD-10500, Kaggle images, and real 

photographs, the method achieved a mean accuracy of 

86.44%, an improvement of 6% over standard YOLOv4.  

A DenseNet-based edge detection algorithm [10] used an 

optimized cross-entropy loss and six enhancement designs 

to improve feature representation. The method 

outperformed conventional CNNs, improving the area 

under the curve (AUC) by 18% across 11 defect types. A 

method using direction templates and image pyramids [11] 

was presented for identifying defects in color and 

periodically patterned fabrics. A stacked de-noising auto-

encoder reconstructed the image from blocks sampled in 

the pyramid representation. Defective blocks were 

identified using SSIM, resulting in a mean accuracy of 

69.68% on TILDA fabric images. Two CNN-based 

structures [12] were presented for jacquard-patterned 

fabrics. One used CNNs for defect identification on 

isolated patterns, while the other applied integrated state-

of-the-art CNNs to the entire dataset. The multispectral 

dataset included RGB and near-infrared images, which 

were preprocessed using adaptive histogram equalization. 

A saliency-based method [13] identified defects by 

estimating the membership degree of each defect region. 

Iterative thresholding and morphological operations were 

used, achieving a mean identification accuracy of 95.48% 

on various experimental images. A CNN model [14] was 

designed to learn defect features from only 50 labeled 

samples. Initially, the model was applied without training 

to generate raw outputs, which were later used for 

supervised learning. Experiments on four fabric datasets 

with different textures achieved a mean accuracy of 
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95.89%. A dictionary learning-based method [15] first 

segmented a defect-free fabric image to build a joint 

matrix, from which a random dictionary was created. 

Orthogonal matching pursuit and k-SVD (k singular value 

decomposition) were applied to learn sparse 

representations. Defect identification was based on 

reconstruction error and adaptive thresholding, achieving 

93.63% mean accuracy on TILDA classes 1C , 2C , and 3C .  

A method for nonwoven fabric defect identification [16] 

was presented using the LL-YOLOv5 network, which 

incorporated the LSK and Light-RepGFPN modules. 

These modules enhanced small defect identification and 

feature fusion. The model achieved a mean accuracy of 

90.30% on a hyperspectral nonwoven fabric dataset, 

outperforming standard YOLOv5 by 2.2%. A Color 

Conversion Network (CCN) [17] converted RGB images 

into an optimized color space to better distinguish defects 

from normal patterns. A contrastive loss function 

maximized the separation between defect and non-defect 

features.  A complementary adversarial structure, CASDD 

[18], combined an encoder–decoder module with dual 

discriminators for identifying texture defects. Edge 

detection blocks were integrated into convolutional layers, 

while two discriminators focused on key features and edge 

differences to improve boundary identification. A YOLO-

SCD network [19] used an attention mechanism to 

enhance feature representation in the neck of the model. It 

achieved a mean accuracy of 82.92%, improving YOLOv4 

performance by 8.49%. Finally, a network incorporating a 

parallel dilated attention module [20] and a feature 

pyramid network was introduced to capture multiscale 

contextual information. Alpha-GIoU loss was used to 

refine bounding box regression.  Additionally, a dual 

attention module, self-enhanced (SE) and cross-enhanced 

(SE), was developed [21] to enrich contextual and inter-

layer feature representations for improved prediction 

accuracy. 

 

 

 

3- Proposed Method  

The steps of the proposed method are illustrated in Fig. 1. 

Each fabric image is selected from the TILDA dataset and 

has a resolution of 400×400 pixels. First, the GLCM of the 

input image is calculated in 0  and 90  orientations. From 

each matrix, six features are extracted using Equations (1) 

to (6). The feature defined in Equation (1) captures the 

scattering of grey levels around the mean intensity.   
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Fig. 1 Flowchart of the proposed method 

 

The feature defined in Equation (2) shows the spreading of 

sum of grey levels around the mean intensity. 
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The feature defined in Equation (3) shows the mean 

distribution of the sum of grey levels. 
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The feature defined in Equation (4) shows the irregularity 

of difference distribution of the image intensities.  

( ) ( )( )
1

0

log
gN

x y x y

i

C i C i

−

− −

=

−                          (4) 

The feature defined in Equation (5) shows the maximum 

of the GLCM members. 

( ), ,i jMax C i j                                            (5) 

The feature defined in Equation (6) shows the 

homogeneity of the grey levels distribution.  
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In addition to GLCM features, four statistical intensity 

features, minimum, maximum, median, and mean are 

computed from the original image.  

4- Results and Comparisons 

4-1- TILDA Database 
TILDA database [27] is a comprehensive database 

commonly used for evaluating fabric defect identification 

algorithms. It contains 3,200 images across four classes, 

including various types of simple and patterned designs. 

The proposed method was implemented and tested on this 

dataset. The 1C class has simple fabrics with a narrow 

structure. The 2C  class has simple fabrics with a random 

structure. The 3C class has periodical structured fabrics. 

The 4C  class has fabrics with randomly patterns.  

 

4-2- Evaluation Criteria 
Four standard evaluation metrics, defined by Equations (7) 

to (10) [27], are used to assess the performance of the 

proposed method. 

( .)
TP

Sensitivity Sens
TP FN

=
+

                    (7) 

( .)
TN

Specificity Spec
TN FP

=
+

                    (8) 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                 (9) 

( )
FP FN

False Rate FR
TP TN FP FN

+
=

+ + +
       (10) 

Where TP shows true defect identification, which 

indicates only the pixels with defect are white in the 

identification result. Both TN and FP show no white 

pixels in the identification result of the free defect image.
FN shows no white pixels in the identification result of 

the defective image.  

 

 

4-3- Validation 

The simulation of the proposed method is done by 

MATLAB 2019 with 64 bit and operating system of the 

Windows 7. It is implemented on a system based on the 

Intel(R) core (TM) i3-2350 CPU @2.3 GHz, 4GB RAM.  

Several results for 1C are shown in Table 1. Two groups of 

designs in 1C are 1 1C r and 1 3C r . 200 images of 1 1C r  are 

defective and 50 images are non-defective. 160 images of 

1 3C r  are defective and 50 images are non-defective. The 

results in Table 1 report the high mean accuracy of the 

proposed method for defect identification in
1C . 

Table 1: Defect identification results of the proposed method for
1C  

Class Sens. Spec. Accuracy FR 

1 1C r  90.14% 91% 92.10% 7.90% 

1 3C r  87.94% 100% 91.72% 8.28% 

 

Several results for 2C are shown in Table 2. Two groups 

designs in 2C are 2 2C r  and 2 3C r . 200 images of 2 2C r are 

defective and 50 images are non-defective. 200 images of 

2 3C r are defective and 50 images are non-defective. It has 

to be noticed that black holes are randomly placed in the 

images background of 2C , that should not be identified as 

the defects. The results in Table 2 report the high mean 

accuracy of the proposed method for defect identification 

in 2C . 

Table 2: Defect identification results of the proposed method for
2C  

Class Sens. Spec. Accuracy FR 

2 2C r  100% 100% 100% 0% 

2 3C r  97.60% 100% 98.89% 1.11% 

 

Several results for 3C  are shown in Table 3. Two groups 

designs in 3C are 3 1C r  and 3 3C r . 170 images of 3 1C r  are 

defective and 50 images are non-defective. 160 images of 

3 3C r  are defective and 50 images are non-defective. The 

results in Table 3 illustrate that the defect identification in 

3C is more difficult than that on 2C , because of various 

grey levels in the background of the patterned fabric 

images in 3C . 

 

Table 3: Defect identification results of the proposed method for
3C  

Class Sens. Spec. Accuracy FR 

3 1C r  94.79% 100% 96.53% 3.47% 

3 3C r  93.42% 100% 94.67% 5.33% 

 

 

4-4- Visual Results 
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The proposed method several visual results for
1C ,

2C , and

3C are respectively shown in Fig. 2, 3, and 4. In Fig. 2, 
images in rows 1 to 2 are from 1 1C r , and images in rows   3 

   

  

  

  
Fig. 2 Several fabric defect identification results for

1 1C r  (rows 1 to 2) 

and
1 3C r  (rows 3 to 4) by the proposed method 

 

 

to 4 are from 1 3C r . In Fig. 3, images in rows 1 to 2 are from

2 2C r , and images in rows 3 to 4 are from 2 3C r . In Fig. 4, 

images in rows 1 to 2 are from 3 1C r , and images in rows 3 

to 4 are from 3 3C r . 

In some images, defects are highly camouflaged within the 

fabric background, leading to misidentification. Examples 

of such cases are shown in Fig. 5. Additionally, no results 

are reported for fabrics with random patterns, as the 

proposed method performs poorly on this category.  

a.  b.  

c.  d.  

e.  f.  

g.  h.  
Fig. 3 Several fabric defect identification results for

2 2C r (rows 1 to 2) 

and
2 3C r (rows 3 to 4) by the proposed method 

 

4-5- Comparisons 

Several state-of-the-art methods were implemented and 

evaluated on the TILDA dataset for comparison. Table 4 

summarizes the mean defect identification accuracy of 

each method. While some advanced models achieve 

slightly higher accuracy, they often rely on deep learning 

and require complex architectures or large amount of 

labeled data. In contrast, the proposed method is simple, 

interpretable, and easy to implement, yet achieves high 

accuracy for most fabric types, expect randomly 

patterned fabrics.  
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Fig. 4 Several fabric identification results for

3 1C r (rows 1 to 2) and
3 3C r

(rows 3 to 4) by the proposed method 

 

  

Fig. 5 Two samples of defects fade into the fabric background, leading 

to misidentification 

Table 4: Defect identification mean accuracy of the proposed method 

compared with a several state-of-the-art methods on the TILDA  
Method Mean Accuracy 

[2] 93.70% 

[4] 94.95% 

[5] 90.62% 

[6] 89.86% 

[7] 93.84% 

[9] 94.37% 

[8] 95.75% 

[11] 95.25% 

[13] 95.68% 

[14] 95.30% 

[19] 91.97% 

Proposed 95.65% 

5- Conclusions 

This study introduced a simple, supervised method for 

accurate and reliable fabric defect identification using the 

KNN classifier and PCA. By reducing the dimensionality 

of the feature vectors. The proposed method achieves 

lower memory usage and computational cost, making it 

suitable for real-time applications.  

Extensive experiments on the comprehensive TILDA 

dataset (3,200 images across four classes) demonstrated 

the effectiveness of the approach. While the method was 

not evaluated on fabrics with random patterns, it achieved 

high identification accuracy on simple and non-random 

patterned fabrics.   

Specifically, the proposed method achieved mean 

identification accuracies of 91.91% for class 1C , 99.44% 

for class 2C , and 95.60% for class 3C . The lower 

performance in class 1C is attributed to the narrow and less 

distinguishable textures in simple fabrics. The overall 

average accuracy across classes 1C to 3C is 95.65%.   

The key innovation of this work is achieving competitive 

accuracy without using any deep or non-deep neural 

network models, relying solely on classical machine 

learning techniques (PCA and KNN). As a result, the 

method is well-suited for real-world applications where 

simplicity, interpretability, and resource efficiency are 

critical. However, the current method is not applicable to 

fabrics with random patterns, as the identification accuracy 

is insufficient for practical use in such cases.  
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Given its performance on the TILDA dataset, the method 

is expected to generalize well to other fabric datasets, 

provided the fabrics have simple or regular patterns. 

Future work will focus on extending the method to handle 

random patterns and more complex fabric structures.      
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