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Abstract  
The transition to sixth-generation (6G) networks demands highly energy-efficient solutions for large-scale IoT services. 

Drone Base Stations (DBSs) offer flexible coverage, but their three-dimensional placement must be optimized to reduce 

both transmission and hovering energy. This paper, model DBS deployment as a power-minimization problem and 

introduce an Improved Grey Wolf Optimization (IGWO) algorithm that integrates adaptive control parameters, exponential 

weighting of leader contributions (alpha/beta/delta), and a dynamic control structure that progressively favors elite solutions. 

This design improves search efficiency in high-dimensional, nonlinear spaces and reduces the risk of premature 

convergence. Extensive MATLAB simulations across multiple propagation environments demonstrate that IGWO achieves 

lower network power consumption and faster convergence compared to standard metaheuristics, while preserving coverage 

and connectivity. Specifically, the simulation results demonstrate that the proposed method achieves a remarkable 

superiority over other optimization algorithms, showing more than a 2% improvement compared to the best among them 

the standard GWO algorithm—thereby confirming its effectiveness and efficiency in low-power network scenarios. 

 

 

Keywords: 6G Communication Networks; Drone Base Stations (DBSs); Internet of Things (IoT); Improved Gray Wolf 

Optimization (IGWO); Energy Efficiency.  

1- Introduction 

The emergence of 6G communication networks is a 

significant step forward in wireless technology, which 

provides ultra-high capacity, ultra-reliable low-latency 

communication and these technological advancements 

have been accompanied by the use of DBSs which have 

offered a practical means of addressing the growing and 

geographically dispersed needs for wireless services, 

especially in areas where conventional tower-based 

networks are constrained or unable to adjust [1-3]. 

Incorrect positioning may lead to signal losses, higher 

energy needs, and degraded network capabilities, 

particularly in areas with numerous constructions. Thus, it 

is necessary to implement a thoughtful and organized 

strategy for the three-dimensional distribution of DBSs in 

order to optimize the potential capabilities of 6G networks 

[4,5]. Conventional optimization works often fail to 

provide globally optimal solutions because of the intricate, 

ever-changing, and multi-layered nature of DBS 

placement. Conversely, metaheuristic algorithms inspired 

by the dynamics of nature and society are gaining 

increasing attention for their reliability and efficiency in 

the face of the intricacies of optimization problems [6]. 

Authors in [7] propose an optimized method for DBS 

placement using the Marine Predators Algorithm (MPA), 

which is good at avoiding local optima. Through 

simulation, their approach outperforms previous 

techniques, with an average path loss of 56.13 dB, which 

significantly improves path loss mitigation and user access. 

The work in [8] describes the quasi-opposition-based 

lemurs optimizer (QOBLO), a new method of using lemur 

foraging strategies with quasi-opposition learning to 

optimally deploy DBS in NG-I. QOBLO outperforms 

other swarm methods, as per thorough simulations and 

statistical analysis, markedly increasing connectivity, 

coverage, and energy efficiency, and providing a strong 

scalable solution for 6G network problems. In [9], 

researchers present a two-layer optimizer using a pre-

trained VGG-19 model and micro-swarms to optimize 

network performance by means of non-orthogonal 

multiple access. It is demonstrated that after statistical 

testing, the method obtains a 98% accuracy of results 
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when compared to Cuckoo Search, Grey Wolf, and 

Particle Swarm Optimization. 

In [10], an analysis of a wireless architecture where aerial 

and terrestrial base stations serve respective users is 

carried out, with emphasis on how ABS height and 

transmit power alter rates for downlink and uplink 

communication. The results show that optimal ABS 

configurations are often at the maximum or minimum 

extremity, and factors like user distance affect 

performance. Based on [11] where a multi-UAV 

communication setting is addressed, the authors formulate 

a multi-objective optimization problem, CUEMOP, to 

pursue improved coverage and energy saving. The authors 

propose the Improved Multi-objective Grey Wolf 

Optimizer (ImMOGWO) which includes the clustering, 

hybrid initialization techniques, and innovations related to 

the Levy flight algorithms. It is demonstrated that trial 

simulations show that ImMOGWO has better efficiency 

and solution quality than benchmark algorithms. 

In [12], researchers conduct systematic mapping analysis 

of 3D placement in communication systems with UAVs, 

analyzing goals of optimization, system models, and 

solution techniques. The study indicates that there is a 

focus on optimizing data rate, power and coverage using 

large scale fading models, heuristic algorithms dominate, 

and there is a lack of significant work on outage 

probability, cost, and quality of experience and spectrum 

optimization. In [13], the researchers propose a Mixed-

Integer Non-Linear Programming method for coordinating 

DBS location optimization and minimization of their 

number, using a modified PSO algorithm that begins with 

K-means-based initialization. A unique communication 

protocol is established and simulation results prove the 

approach offers low packet loss, minimized latency, and 

extensive user coverage across various environments. 

In [14], the DBS placement problem is addressed using P-

median optimization; fuzzy clustering is used to generate 

candidate positions and a bisection algorithm is used to 

determine the optimum number of DBSs. The optimization 

solution yields better results than rival approaches, 

especially when the clustering parameters are adjusted 

with high precision. The authors in [15] perform an 

assessment of a variety of existing swarm intelligence 

algorithms including Cuckoo Search (CS), Elephant Herd 

Optimization (EHO), Grey Wolf Optimization (GWO), 

Monarch Butterfly Optimization (MBO), Salp Swarm 

Algorithm (SSA), and Particle Swarm. They examine how 

well and productively these algorithms solve a specified 

problem, carrying out tests in various scenarios. To 

systemically assess the algorithms, the authors use the 

Friedman and Wilcoxon tests. Through the use of these 

tests, the study creates a foundation for performance 

disparities evaluation and identifies the most effective 

swarm intelligence methods for dealing with the problem. 

This study employs an Improved Grey Wolf Optimization 

(IGWO) algorithm for the optimal placement of drone 

base stations (DBSs) within 6G cellular networks, with the 

primary objective of minimizing network power 

consumption. Owing to its high capability in navigating 

complex, high-dimensional search spaces, the IGWO 

algorithm rapidly converges toward optimal solutions. 

This characteristic proves particularly advantageous for 

the placement of DBSs, as it significantly reduces 

computational time while achieving near-optimal 

configurations. Furthermore, the IGWO algorithm 

maintains a balance between local exploitation and global 

exploration. This adaptive balance mitigates the risk of 

entrapment in local optima and facilitates the discovery of 

more globally efficient placement strategies for the DBSs. 

The key contributions of this study include: 

An optimization framework is formulated to minimize the 

average power consumption of ground users by 

strategically deploying DBSs. Given the high-dimensional 

and nonlinear nature of the problem space, the Improved 

Gray Wolf Optimization (IGWO) algorithm, rooted in 

swarm intelligence, is utilized. The algorithm adaptively 

maintains a dynamic balance between exploration and 

exploitation, thereby reducing the likelihood of premature 

convergence and enhancing the algorithm’s ability to 

approximate the global optimum effectively. 

A dynamic weighting mechanism is introduced to 

reinforce gradual exploitation. In this mechanism, the 

weights assigned to the alpha, beta, and delta wolves are 

updated iteratively using exponential functions. As the 

iterations progress, increased emphasis is placed on the 

alpha wolf’s position, thereby enhancing the algorithm’s 

ability to exploit the most promising solution discovered 

thus far and leading to more precise convergence behavior. 

A dynamic control structure is also developed to gradually 

intensify the influence of elite solutions over time. Unlike 

conventional approaches that uniformly aggregate the 

guidance from all reference wolves, this method employs a 

targeted weighting strategy. This allows the search process 

to be progressively steered toward more reliable regions of 

the solution space. Such structural modification in 

information aggregation significantly enhances the 

algorithm’s performance in complex and dynamic wireless 

communication environments. 

The efficacy of collective intelligence-based techniques 

for identifying the optimal position of drone base stations 

has been assessed through extensive simulations. The 

superiority of the suggested approach in reducing average 

power consumption has been demonstrated by a 

comparative analysis conducted under various 

environment circumstances, search agent counts, and user 

densities. 

The remainder of this paper is organized as follows: The 

suggested methodology is presented in Section 2. The 

simulation settings and performance evaluation processes 
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are described in Section 3, and the paper's conclusion and 

future research prospects are outlined in Section 4. 

2-  Proposed Method 

The primary objective of this study is to propose an 

effective methodology for the optimal placement of drone 

base stations (DBSs) within 6G cellular networks, aiming 

to minimize overall network power consumption. To 

achieve this, an Improved Gray Wolf Optimization 

(IGWO) algorithm is employed. The IGWO algorithm 

maintains an effective trade-off between local exploitation 

and global exploration. This balance significantly 

contributes to avoiding local optima and facilitates the 

discovery of more efficient deployment strategies for 

DBSs. Owing to its high flexibility, IGWO exhibits strong 

adaptability to dynamic network environments and 

variable conditions—such as fluctuating user densities and 

evolving network demands—allowing it to consistently 

determine optimal base station locations in real time. 

Moreover, compared to conventional metaheuristic 

approaches, the IGWO algorithm demonstrates greater 

stability in producing reliable solutions and shows robust 

performance under the diverse challenges inherent in 6G 

communication networks. 

2-1- System Model 

This section outlines the system model used for evaluating 

the service provisioning capabilities of DBSs to Internet of 

Things (IoT) devices. The conceptual system architecture 

is illustrated in Figure 1. In the presented structure 

Sdevice={1,2,...,s} denotes the set of IoT devices randomly 

distributed within a two-dimensional area, and 

KDBS={1,2,...,k} represents the set of DBSs deployed to 

serve these devices. Each DBS hovers above the device 

layer. 

 

 
 

Fig.1. Conceptual System Model 

Traditional channel models are insufficient for accurately 

simulating air-to-ground (AtG) communication due to the 

altitude variability of DBSs. Instead, two primary link 

types are considered for modeling the relationship between 

DBSs and IoT devices: Line-of-Sight (LoS) and Non-

Line-of-Sight (NLoS) connections. 

2-2- Air-to-Ground Propagation Model 

The probability of establishing a Line-of-Sight (LoS) link 

between the k-th DBS and the s-th IoT device is given by 

the following expression: 

 

𝑃(ℎ𝑘. 𝑑𝑘,𝑠) =
1

1+𝛼exp⁡[−𝛽(arctan⁡(
ℎ𝑘
𝑑𝑘.𝑠

)−𝛼)]
,                (1)  

                                

where 𝛼 and 𝛽 are environment-dependent parameters, ℎ𝑘 

denotes the k-th DBS altitude, and 𝑑𝑘.𝑠  is the horizontal 

distance between the DBS and the IoT device, defined as: 

 

𝑑𝑘.𝑠 = √(𝑥𝑘 − 𝑥𝑠)
2 + (𝑦𝑘 − 𝑦𝑠)

2.                                   (2) 

 

Here, (𝑦𝑘 . 𝑥𝑘) and (𝑦𝑠. 𝑥𝑠) represent the 2D coordinates of 

the k-th DBS and the IoT device, respectively. 

Using the LoS and NLoS probabilities, the path loss can 

be modeled as: 

PL⁡(ℎ𝑘 . 𝑑𝑠) = 20log⁡(√ℎ𝑘
2 + 𝑑𝑘.𝑠

2 ) + 𝐴𝑃(ℎ𝑘. 𝑑𝑘.𝑠) + 𝐵 (3) 

where: 

𝐴 = 𝜂𝐿𝑜𝑆 − 𝜂𝑁𝐿𝑜𝑆,                                                             (4) 

𝐵 = 20log⁡ (
4𝜋𝑓𝑐

𝑐
) + 𝜂𝑁𝐿𝑜𝑆.

                                               (5) 

In these equations: 

• 𝜂 represents the mean additional path loss; 

• A is the differential loss between LoS and NLoS 

conditions; 

• 𝑓𝑐 is the carrier frequency (in Hz); 

• c denotes the speed of light. 

 

2-3- Objective Function for Optimal DBS 

Placement 

The central goal of this research is to determine optimal 

placements for the DBSs that minimize the total power 

consumption of the network. This objective is formulated 

as an optimization problem and is addressed using the 

proposed IGWO metaheuristic algorithm. Given that the 

objective function plays a pivotal role in the design of any 

metaheuristic optimization strategy, it is formally defined 

in this section to guide the optimization process effectively. 

2-3-1 Minimizing Network Power Consumption 

The objective of this section is to present a comprehensive 

model for calculating the total power consumption of the 

network, incorporating the energy required for electronic 

processing, average data transmission time, path loss, and 
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other real-world parameters. To this end, the transmitter’s 

power consumption can be considered to comprise two 

components: a fixed amount of electronic energy required 

for processing, and the transmission energy component, 

which depends on the path loss. Consequently, the average 

power consumption for communication between the s-th 

user device and the k-th Drone Base Station (DBS) can be 

expressed as: 

 

𝑃𝑐𝑜𝑛𝑠𝑎𝑣𝑒(ℎ𝑘 . 𝑑𝑠) = (𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑎𝑚𝑝−𝑡𝑥 ∙ PL⁡(ℎ𝑘 . 𝑑𝑠)) ∙
𝐾

𝑇𝐴𝑣𝑒
(6) 

 

where, 𝐸𝑒𝑙𝑒𝑐 is the energy required for processing each bit 

electronically and is measured in joules (J), 𝜀𝑎𝑚𝑝−𝑡𝑥 

represents the amplifier efficiency needed to compensate 

for the path loss during transmission and is also expressed 

in joules (J), 𝐾 is the number of bits transmitted, and 𝑇𝐴𝑣𝑒 

denotes the average data transmission time in seconds (s). 

It is important to note that 𝜀𝑎𝑚𝑝−𝑡𝑥 quantifies the energy 

consumed per bit to overcome the attenuation in the signal 

path and is determined based on the path loss intensity PL. 

Accordingly, the total average energy consumed across the 

network—borne by the devices—can be minimized by 

optimizing the placement of DBSs. Assuming that s 

indexes the devices and k indexes the DBSs, and that each 

device connects to the nearest DBS, the optimization 

problem can be formulated as follows: 

 

minimize
{𝑥.𝑦.ℎ}

∑  𝐾
𝑘=1 ∑  𝑆

𝑆=1 𝑃𝑐𝑜𝑛𝑠𝑎𝑣𝑒 ⁡(ℎ𝑘.𝑑𝑠)

𝑆

 subject to: 𝒞1: 𝑥𝑚𝑖𝑛 ≤ 𝑥𝐷
𝑘 ≤ 𝑥𝑚𝑎𝑥 . ∀𝑘

𝒞2: 𝑦𝑚𝑖𝑛 ≤ 𝑦𝐷
𝑘 ≤ 𝑦𝑚𝑎𝑥 . ∀𝑘

𝒞3: ℎ𝑚𝑖𝑛 ≤ ℎ𝐷
𝑘 ≤ ℎ𝑚𝑎𝑥 . ∀𝑘

                            (7) 

 

Here, 𝑥 , 𝑦  and ℎ  represent the 3D spatial coordinates of 

every DBS, while 𝑥𝑚𝑖𝑛/𝑥𝑚𝑎𝑥  , 𝑦𝑚𝑖𝑛/𝑦𝑚𝑎𝑥  and ℎ𝑚𝑖𝑛/ℎ𝑚𝑎𝑥 

define the boundaries of the deployment region. 

2-4- Optimal Placement of Drone Base Stations 

Using the Improved Grey Wolf Optimization 

(IGWO) Algorithm 

In this study, the Improved Grey Wolf Optimization 

(IGWO) algorithm is employed to determine the optimal 

positioning of drone base stations (DBSs), with the aim of 

minimizing the power consumption of Internet of Things 

(IoT) user devices as defined by the objective functions.  

The Grey Wolf Optimizer (GWO) is a nature-inspired 

metaheuristic algorithm that mimics the social hierarchy 

and hunting behavior of grey wolves in the wild. It is 

particularly effective for solving complex optimization 

problems. In this algorithm, a population of "wolves" 

represents candidate solutions in the search space. The 

optimization process begins with evaluating each wolf’s 

position and identifying the top solutions, referred to as the 

alpha, beta, and delta wolves. The leaders direct the other 

wolves as they iteratively update their positions based on 

these until certain termination conditions are satisfied, like 

a convergence threshold or maximum number of iterations. 

The final position of the alpha wolf is considered the 

optimal solution. Due to its simplicity and efficiency, 

GWO has attracted considerable interest in both academic 

and industrial optimization tasks. The main procedural 

steps of the IGWO algorithm are as follows: 

 

Step 1: Initialization of Parameters 

 

Initially, key factors including the number of wolves (N), 

number of variables (problem dimensions, D), number of 

iterations (T), and the control vector (a) are defined. The 

control vector a, which linearly decreases from 2 to 0 over 

the iterations, balances the exploration and exploitation 

phases of the algorithm. The decrease in the value of a 

enables the algorithm to initially conduct a wide-ranging 

search (exploration), and later to focus on the best regions 

(exploitation). This vector is defined as follows: 

 

𝑎⃗(𝑡) = 2 −
2𝑡

𝑇
 .                                                                (8) 

 

Step 2: Population 

 

After initializing the parameters, a population of grey 

wolves—representing potential solutions—is randomly 

generated within the search space. The initial position of 

each wolf is determined as follows: 

 

𝑋𝑖.𝑗 = 𝑟𝑎𝑛𝑑(0.1) ⁡ ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) +⁡𝑙𝑏𝑗,                            (9) 

 

where: 

• 𝑋𝑖.𝑗 is the j-th variable for the i-th wolf, 

• 𝑢𝑏𝑗 and 𝑙𝑏𝑗 are the upper and lower bounds of the 

j-th variable, and 

• 𝑟𝑎𝑛𝑑(0.1)  is a uniformly distributed random 

number between 0 and 1. 

 

Step 3: Evaluation of Objective Function 

 

Each wolf’s position is evaluated using the objective 

function: 

𝑓𝑖 = 𝑓(𝑋𝑖) .                                                                    (10) 

 

Step 4: Social Hierarchy Assignment 

 

This step reflects the social behavior of grey wolves in 

nature, where the leader directs the hunting group. In this 

stage, based on the fitness values obtained in the previous 

step, the wolves are divided into four categories: Alpha, 

Beta, Delta, and Omega. The Alpha, Beta, and Delta 
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wolves act as the leaders of the hunt, while the Omega 

wolves follow the leaders. Therefore, the wolf with the 

best fitness value is selected as the Alpha wolf 𝑋𝛼, and the 

wolves with the second and third best fitness values are 

selected as the Beta 𝑋𝛽 and Delta 𝑋𝛿  wolves, respectively. 

The remaining wolves are classified as Omega wolves 𝑋𝜔. 

 

Step 5: Modeling the Hunting Behavior and Position 

Update of Grey Wolves 

The alpha, beta, and delta wolves' positions are used to 

update the wolves' positions at this point. To facilitate this, 

the control vectors A and C are defined as follows: 

𝐴 = 2 ∙ 𝑎⃗ ∙ 𝑟1 − 𝑎⃗  ,                                                          (11) 

 

𝐶 = 2 ∙ 𝑟2 .                                                                       (12) 

 

Here, 𝑟1 and 𝑟2 are randomly generated vectors of [0,1]𝐷. 

Next, the relative distance and estimated positions with 

respect to the alpha, beta, and delta wolves are calculated 

using the following relations: 

 

𝐷⃗⃗⃗𝛼 = |𝐶1 ∙ ⁡ 𝑋⃗𝛼 − 𝑋⃗| ⁡⁡⁡⇒ ⁡⁡⁡⁡ 𝑋⃗1 =⁡ 𝑋⃗𝛼 −⁡𝐴1 ∙ ⁡ 𝐷⃗⃗⃗𝛼  ,         (13) 

 

𝐷⃗⃗⃗𝛽 = |𝐶2 ∙ ⁡ 𝑋⃗𝛽 − 𝑋⃗| ⁡⁡⁡⇒ ⁡⁡⁡⁡ 𝑋⃗2 =⁡ 𝑋⃗𝛽 −⁡𝐴2 ∙ ⁡ 𝐷⃗⃗⃗𝛽 ,          (14) 

𝐷⃗⃗⃗𝛿 = |𝐶3 ∙ ⁡ 𝑋⃗𝛿 − 𝑋⃗| ⁡⁡⁡⇒ ⁡⁡⁡⁡ 𝑋⃗3 =⁡ 𝑋⃗𝛿 −⁡𝐴3 ∙ ⁡ 𝐷⃗⃗⃗𝛿.            (15) 

 

Finally, the wolves’ final positions are updated according 

to following equation: 

𝑋⃗(𝑡 + 1) =
𝑋⃗⃗1+𝑋⃗⃗2+𝑋⃗⃗3

3
 .                                                     (16) 

As evident in the Eq. (16) above, the influence of the alpha, 

beta, and delta wolves is equally weighted in determining 

the optimal position. However, since the alpha wolf 

typically represents a better solution than the beta, and the 

beta better than the delta, assigning adaptive weights to 

each of their contributions can lead to more effective 

convergence toward the global optimum. 

In the proposed IGWO algorithm, the initial weights 

assigned to the alpha, beta, and delta wolves are equal, 

which supports the exploration phase by allowing the 

algorithm to broadly search the solution space. To enhance 

the exploitation phase over time, these weights are 

adaptively adjusted throughout the iterations. Specifically, 

the weight of the alpha wolf gradually increases, directing 

more focus on the region near the current best solution, 

while the weights of the beta and delta wolves decrease, 

thus reducing their influence. This adaptive weighting 

strategy ensures a balanced transition from exploration to 

exploitation, allowing the algorithm to converge 

effectively to an optimal or near-optimal solution by the 

end of the search process. The updated position equation 

with adaptive weighting becomes: 

𝑋⃗(𝑡 + 1) =
𝑤𝛼(𝑡)𝑋⃗⃗1(𝑡)+𝑤𝛽(𝑡)𝑋⃗⃗2(𝑡)+𝑤𝛿(𝑡)𝑋⃗⃗3(𝑡)

3
,                    (17) 

 

where 𝑤𝛼 , 𝑤𝛽 , and 𝑤𝛿  are the time-dependent adaptive 

weights for the alpha, beta, and delta wolves, respectively, 

defined as: 

𝑤𝛼(𝑡) = ⁡𝑤𝛼_𝑖𝑛𝑖 + (1 − 𝑤𝛼_𝑖𝑛𝑖) ∙ (1 − 𝑒−
5𝑡

𝑇 ) ,                (18) 

𝑤𝛽(𝑡) = 𝑤𝛽_𝑖𝑛𝑖 ⁡ ∙ 𝑒
−
2𝑡

𝑇 ,                                                     (19) 

𝑤𝛿(𝑡) = ⁡𝑤𝛿_𝑖𝑛𝑖 ∙ 𝑒
−
4𝑡

𝑇  .                                                    (20) 

          

Here, 𝑤𝛼_𝑖𝑛𝑖 , 𝑤𝛽_𝑖𝑛𝑖 , and 𝑤𝛿_𝑖𝑛𝑖  represent the initial 

weights for updating the positions of the Alpha, Beta, and 

Delta wolves. At the beginning of the algorithm, these 

initial weights are considered equal, following the standard 

GWO procedure. However, as the algorithm progresses, 

the weights 𝑤𝛼(𝑡), 𝑤𝛽(𝑡) and 𝑤𝛿(𝑡)⁡change over time to 

enhance the algorithm’s exploitation capability. 

Specifically, the weight for the Alpha wolf, which has the 

best position, increases exponentially. Meanwhile, the 

weights for the Beta and Delta wolves gradually decrease 

as the algorithm advances. The exponential coefficients 

are tuned such that the slope of the decrease in 𝑤𝛽(𝑡)⁡is 

less steep than the slope of the decrease in 𝑤𝛿(𝑡). 
 

Step 6: Iterative Execution Until Convergence 

Criterion Is Met 

 

Steps 3 through 5 are executed iteratively until the 

stopping condition—typically the maximum number of 

iterations—is satisfied. Upon termination, the final 

position of the alpha wolf 𝑋⃗𝛼 , representing the optimal 

coordinates of the drone base stations, is returned as the 

best solution obtained by the Improved Grey Wolf 

Optimization algorithm. 

The pseudo-code of proposed method is illustrated in 

Algorithm 1. 

 

2-4-1Computational complexity of the proposed IGWO 

The computational complexity of the proposed IGWO 

algorithm is determined by the population size N, search 

space dimension D, and maximum number of iterations T. 

In each iteration, the algorithm evaluates the objective 

function for all search agents and updates their positions, 

leading to a total complexity of O(N×D×T). The 

additional adaptive weighting and parameter control 

mechanisms require only simple arithmetic operations, 

resulting in negligible extra cost. Hence, the proposed 

IGWO maintains a linear computational complexity 

similar to the standard GWO. 

 
Algorithm 1: Improved Grey Wolf Optimization (IGWO) 

Input:  

  - Objective function f(x) 
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  - Search space dimension D 

  - Population size N 

  - Maximum iterations T 

Output:  

  - Best solution 𝑥𝛼  (corresponding to minimum power 

consumption) 

1: Initialize positions of N grey wolves {xi}, i = 1,...,N randomly 

within bounds 

2: Evaluate fitness f(xi) for all wolves 

3: Identify three best solutions: α (best), β (second best), δ (third 

best) 

4: Set iteration counter t = 1 

5: while (t ≤ T) do 

6:     Update control parameter a(t) using adaptive rule 

7:     For each wolf i = 1 to N do 

8:         Compute coefficient vectors 𝐴 = 2𝑎𝑟1 − 𝑎,  𝐶 = 2𝑟2  

9:         Calculate distances to leaders: 

                 𝐷𝛼 = |𝐶1 ∙ 𝑋𝛼 − 𝑋𝑖| 

                 𝐷𝛽 = |𝐶2 ∙ 𝑋𝛽 − 𝑋𝑖| 

                 𝐷𝛿 = |𝐶3 ∙ 𝑋𝛿 − 𝑋𝑖| 

10:        Update candidate position: 

                 𝑋1 = 𝑋𝛼 −⁡𝐴1 ∙ 𝐷𝛼 

                 𝑋2 = 𝑋𝛽 −⁡𝐴1 ∙ 𝐷𝛽 

                 𝑋3 = 𝑋𝛿 −⁡𝐴1 ∙ 𝐷𝛿                  

11:        Update position: 

                 𝑋𝑖(𝑡 + 1) =
𝑤𝛼(𝑡)𝑋1+𝑤𝛽(𝑡)𝑋2+𝑤𝛿(𝑡)𝑋3

3
 

                (where 𝑤𝛼, 𝑤𝛽, 𝑤𝛿  are dynamic weights)  

12:     end for 

13:     Evaluate new fitness values f(xi) 

14:     Update α, β, δ if better solutions are found 

15:     t = t + 1 

16: end while 

17: Return 𝑥𝛼 as the best solution 

 

3- Performance Evaluation 

The effectiveness of the suggested approach in 

determining the best location for drone base stations 

(DBSs) under varied parameter settings is thoroughly 

evaluated in this section. The proposed approach is 

assessed through numerical results derived from extensive 

software-based simulations. The conducted experiments 

investigate the impact of several key factors, including the 

number of users, the number of search agents (population 

size), the number of iterations (generations), and different 

propagation environments—namely suburban, urban, 

dense urban, and high-rise urban—on path loss and power 

consumption in the Improved Grey Wolf Optimization 

(IGWO) algorithm. Table 1 provides a summary of the 

different parameters related to various environments. It 

should be noted that the parameters related to 

environmental modeling, simulation parameters, and 

parameters related to optimization algorithms are inspired 

by reference [15], which deals with the optimal location of 

DBSs using meta-heuristic algorithms in 

telecommunication networks. Also, the simulations were 

carried out using MATLAB 2023a. In addition all 

simulation results presented in the paper are obtained by 

averaging over 50 independent runs of the proposed 

algorithm to account for its stochastic nature and ensure 

reliability.  

 
Table 1: Propagation Parameters in Different Environments 

Environment α β 𝜼𝑳𝒐𝒔 𝜼𝑵𝑳𝒐𝒔 

Urban 9.61 0.16 1 20 

Suburban 4.88 0.43 0.1 21 

Dense Urban 12.08 0.11 1.6 23 

High-raise 
Urban 27.23 0.08 2.3 34 

 

3-1- Path Loss Evaluation 

In this section, the effect of four different factors on path 

loss is investigated: population size in optimization 

algorithms, maximum number of iterations, type of 

propagation environment, and the number of users. 

 

Experiment 1: Impact of Propagation Environment on 

Path Loss 

This experiment evaluates the impact of different 

propagation environments on the average path loss. For 

this purpose, the number of users is set to 20, the 

maximum number of iterations is 100, and the population 

size (number of search agents) is 25. The detailed 

parameters of this experiment are represented in Table 2. 

 
Table 2: Experiment 1 Simulation Parameters 

 

Parameter Value 

Number of Users 20 

Maximum number of 
iterations 100 

Various Environments 
Urban- suburban- 
dense urban, high-

rise urban 

Number of Search Agent 25 

 

Figure 2 illustrates the effect of different propagation 

environments—suburban, urban, dense urban, and high-

rise urban—on the path loss within the network. As shown 
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in the figure, suburban environments exhibit the lowest 

path loss across all optimization algorithms, while dense 

urban environments result in the highest path loss. 

Moreover, it is observed that the proposed IGWO method 

consistently yields lower path loss compared to other 

optimization techniques across all environment types, 

indicating the algorithm’s robustness and adaptability to 

diverse propagation conditions. 

 

 
Fig.2. Effect of Path Loss in Various Environments for Different 

Approaches 

 

Experiment 2: Impact of Maximum Number of 

Iterations on Path Loss 

This investigation assesses how varying the maximum 

number of iterations (generations) affects the overall path 

loss. The simulation parameters used in this experiment 

are listed in Table 3. 

 
Table 3: Experiment 2 Simulation Parameters 

 

Parameter Value 

Number of Users 20 

Maximum number of 
iterations 50, 100, 200, 500 

Various Environments Urban 

Number of Search Agent 25 

 

As illustrated in Figure 3, the path loss decreases with an 

increasing number of iterations for all metaheuristic 

algorithms. This demonstrates that increasing the number 

of iterations enhances the convergence and performance of 

optimization methods. Furthermore, the lowest recorded 

path loss of 86.8 dB is achieved by the proposed Improved 

Grey Wolf Optimization (IGWO) when the number of 

iterations reaches 500, highlighting the superior efficiency 

of the proposed algorithm in minimizing power 

consumption compared to alternative approaches. 

 

 
Fig.3. Effect of the Maximum Iterations on Path Loss for Different 

Methods 

 

Experiment 3: Impact of the Number of Search Agents 

on Path Loss 

The third investigation investigates the effect of varying 

the count of search agents on path loss for different 

metaheuristic algorithms, including the proposed IGWO 

method. The simulation considers 20 users, a maximum of 

100 iterations, and an urban propagation environment. The 

detailed parameters of this experiment are shown in Table 

4. 

 
Table 4. Experiment 3 Simulation Parameters 

Parameter Value 

Number of Users 20 

Maximum number of iterations 100 

Various Environments Urban 

Number of Search Agent 5, 25 ,50, 75, 100 

 

Figure 4 depicts the effect of the number of search agents 

on the path loss. As seen in the figure, increasing the 

number of agents generally results in a reduction in path 

loss. The proposed IGWO method consistently achieves 

the lowest path loss across various population sizes 

compared to the other approaches. 
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Fig.4. Effect of the Number of Search Agents on Path Loss for 

Different Methods 

 

Experiment 4: Impact of User Counts on Path Loss 

Based on the first simulation scenario, this investigation 

assesses how the count of users affects the suggested 

method's performance. While keeping the maximum 

number of iterations, propagation environment, and 

number of search agents constant, the number of users is 

varied to assess its impact on the path loss. The simulation 

parameters are summarized in Table 5. 

 
Table 5: Experiment 4 Simulation Parameters 

Parameter Value 

Number of Users 10, 20, 30, 40, 50 

Maximum number of iterations 100 

Various Environments urban 

Number of Search Agent 25 

 

As shown in Figure 5, the path loss increases with the 

number of users. Additionally, it is observed that the 

proposed IGWO algorithm consistently yields the lowest 

path loss, particularly for 10 users, further demonstrating 

its ability to adapt and scale across different user densities. 

 

 
Fig.5. Effect of the User Counts on Path Loss for Different 

Methods 

3-2- Evaluation of Average Power Consumption 

This section investigates how various factors influence the 

average power consumption of deployed drones across 

four experiments. These include population size, number 

of iterations, propagation environment, and number of 

users. 

 

Experiment 1: Effect of Propagation Environment on 

Power Consumption 

Figure 6 presents the average power consumption for 

various propagation environments. The results show that 

the proposed IGWO algorithm consumes the least energy 

across all environments, with the lowest power 

consumption of 44 mW observed in the suburban scenario. 

Conversely, the highest power consumption (45.8 mW) is 

observed for the PSO algorithm in high-rise urban areas.  

Specifically, the simulation results demonstrate that the 

proposed method achieves a remarkable superiority over 

other optimization algorithms, showing more than a 2% 

improvement compared to the best among them—the 

standard GWO algorithm—thereby confirming its 

effectiveness and efficiency in low-power network 

scenarios. Furthermore, power consumption in suburban 

environments is generally lower for all algorithms, 

confirming the lower propagation loss in such 

environments. 
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Fig.6. Effect of the Propagation Environment on Average Power 

Consumption for Different Methods 

 

Experiment 2: Effect of Maximum Number of 

Iterations on Power Consumption 

As shown in Figure 7, increasing the number of iterations 

significantly reduces average power consumption for all 

algorithms. The IGWO method achieves the minimum 

value of 44.6 mW at 500 iterations, while PSO shows the 

highest power consumption of 45.3 mW at 50 iterations. 

The results confirm that more iterations allow the 

optimization process to converge toward more energy-

efficient deployments. 

 
 

Fig.7. Effect of Maximum Iterations on Power Consumption for 
Different Methods 

 

Experiment 3: Effect of Number of Search Agents on 

Power Consumption 

In Figure 8, the results reveal that increasing the number 

of search agents reduces the average power consumption, 

as more agents improve the search space exploration and 

chances of finding optimal solutions. The IGWO 

consistently outperforms other methods, maintaining the 

lowest power consumption across all population sizes, 

demonstrating its efficient exploration and exploitation 

balance. 

 
 

Fig.8. Effect of the Number of Search Agents on Power 
Consumption for Different Methods 

 

Experiment 4: Effect of Number of Users on Power 

Consumption 

As depicted in Figure 9, power consumption increases 

with the number of users, which is expected due to the 

higher communication and coverage demands. 

Nevertheless, the IGWO algorithm consistently consumes 

less energy than other methods across all user counts. This 

underscores the method's scalability and adaptability, 

primarily due to its dynamic balance between exploration 

and exploitation. 

 
Fig.9. Effect of User Count on Average Power Consumption for 

Different Methods 
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4- Conclusion  

In this study, an improved Gray Wolf Optimization 

(IGWO) algorithm was developed to address the urgent 

challenge of energy-efficient deployment of Drone Base 

Stations (DBSs) in 6G networks. The proposed IGWO 

algorithm, featuring adaptive weighting mechanisms and 

dynamic control structures, demonstrated enhanced 

capacity to explore the complex, multivariate search 

spaces required for effective DBS deployment. Several 

simulation experiments were conducted under varying 

conditions, including different propagation environments, 

population sizes, iteration counts, and user densities. The 

presented strategy consistently exhibited strong 

performance and stability across all simulations. Notably, 

the IGWO algorithm achieved the lowest path loss values 

across all propagation environments, with suburban 

scenarios yielding the lowest overall path loss. In the 

urban environment simulation, the IGWO method 

generated a path loss of only 86.8 dB after 500 iterations, 

outperforming traditional optimization methods. Analysis 

of average power consumption further confirmed that 

IGWO enables significant energy savings. The algorithm 

achieved an average power consumption of 44 mW in 

suburban areas, while also maintaining strong performance 

in dense and high-rise urban environments. 

Increasing the number of search agents and iterations 

further improved the algorithm’s performance, 

demonstrating its scalability and convergence efficiency. 

Even as user demand increased, the power consumption of 

IGWO remained systematically lower than that of all other 

optimization approaches. Future research could explore 

mobility models, examine temporal variations in user 

distribution, and investigate integrated optimization 

strategies to further enhance overall network performance. 
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