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Abstract

The transition to sixth-generation (6G) networks demands highly energy-efficient solutions for large-scale IoT services.
Drone Base Stations (DBSs) offer flexible coverage, but their three-dimensional placement must be optimized to reduce
both transmission and hovering energy. This paper, model DBS deployment as a power-minimization problem and
introduce an Improved Grey Wolf Optimization (IGWO) algorithm that integrates adaptive control parameters, exponential
weighting of leader contributions (alpha/beta/delta), and a dynamic control structure that progressively favors elite solutions.
This design improves search efficiency in high-dimensional, nonlinear spaces and reduces the risk of premature
convergence. Extensive MATLAB simulations across multiple propagation environments demonstrate that IGWO achieves
lower network power consumption and faster convergence compared to standard metaheuristics, while preserving coverage
and connectivity. Specifically, the simulation results demonstrate that the proposed method achieves a remarkable
superiority over other optimization algorithms, showing more than a 2% improvement compared to the best among them
the standard GWO algorithm—thereby confirming its effectiveness and efficiency in low-power network scenarios.

Keywords: 6G Communication Networks; Drone Base Stations (DBSs); Internet of Things (IoT); Improved Gray Wolf
Optimization (IGWO); Energy Efficiency.

by the dynamics of nature and society are gaining
increasing attention for their reliability and efficiency in
the face of the intricacies of optimization problems [6].
Authors in [7] propose an optimized method for DBS
placement using the Marine Predators Algorithm (MPA),

1- Introduction

The emergence of 6G communication networks is a

significant step forward in wireless technology, which
provides ultra-high capacity, ultra-reliable low-latency
communication and these technological advancements
have been accompanied by the use of DBSs which have
offered a practical means of addressing the growing and
geographically dispersed needs for wireless services,
especially in areas where conventional tower-based
networks are constrained or unable to adjust [1-3].
Incorrect positioning may lead to signal losses, higher
energy needs, and degraded network capabilities,
particularly in areas with numerous constructions. Thus, it
is necessary to implement a thoughtful and organized
strategy for the three-dimensional distribution of DBSs in
order to optimize the potential capabilities of 6G networks
[4,5]. Conventional optimization works often fail to
provide globally optimal solutions because of the intricate,
ever-changing, and multi-layered nature of DBS
placement. Conversely, metaheuristic algorithms inspired
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which is good at avoiding local optima. Through
simulation, their approach outperforms previous
techniques, with an average path loss of 56.13 dB, which
significantly improves path loss mitigation and user access.
The work in [8] describes the quasi-opposition-based
lemurs optimizer (QOBLO), a new method of using lemur
foraging strategies with quasi-opposition learning to
optimally deploy DBS in NG-I. QOBLO outperforms
other swarm methods, as per thorough simulations and
statistical analysis, markedly increasing connectivity,
coverage, and energy efficiency, and providing a strong
scalable solution for 6G network problems. In [9],
researchers present a two-layer optimizer using a pre-
trained VGG-19 model and micro-swarms to optimize
network performance by means of non-orthogonal
multiple access. It is demonstrated that after statistical
testing, the method obtains a 98% accuracy of results
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when compared to Cuckoo Search, Grey Wolf, and
Particle Swarm Optimization.

In [10], an analysis of a wireless architecture where aerial
and terrestrial base stations serve respective users is
carried out, with emphasis on how ABS height and
transmit power alter rates for downlink and uplink
communication. The results show that optimal ABS
configurations are often at the maximum or minimum
extremity, and factors like wuser distance affect
performance. Based on [11] where a multi-UAV
communication setting is addressed, the authors formulate
a multi-objective optimization problem, CUEMOP, to
pursue improved coverage and energy saving. The authors
propose the Improved Multi-objective Grey Wolf
Optimizer (IMMOGWO) which includes the clustering,
hybrid initialization techniques, and innovations related to
the Levy flight algorithms. It is demonstrated that trial
simulations show that InMOGWO has better efficiency
and solution quality than benchmark algorithms.

In [12], researchers conduct systematic mapping analysis
of 3D placement in communication systems with UAVs,
analyzing goals of optimization, system models, and
solution techniques. The study indicates that there is a
focus on optimizing data rate, power and coverage using
large scale fading models, heuristic algorithms dominate,
and there is a lack of significant work on outage
probability, cost, and quality of experience and spectrum
optimization. In [13], the researchers propose a Mixed-
Integer Non-Linear Programming method for coordinating
DBS location optimization and minimization of their
number, using a modified PSO algorithm that begins with
K-means-based initialization. A unique communication
protocol is established and simulation results prove the
approach offers low packet loss, minimized latency, and
extensive user coverage across various environments.

In [14], the DBS placement problem is addressed using P-
median optimization; fuzzy clustering is used to generate
candidate positions and a bisection algorithm is used to
determine the optimum number of DBSs. The optimization
solution yields better results than rival approaches,
especially when the clustering parameters are adjusted
with high precision. The authors in [15] perform an
assessment of a variety of existing swarm intelligence
algorithms including Cuckoo Search (CS), Elephant Herd
Optimization (EHO), Grey Wolf Optimization (GWO),
Monarch Butterfly Optimization (MBO), Salp Swarm
Algorithm (SSA), and Particle Swarm. They examine how
well and productively these algorithms solve a specified
problem, carrying out tests in various scenarios. To
systemically assess the algorithms, the authors use the
Friedman and Wilcoxon tests. Through the use of these
tests, the study creates a foundation for performance
disparities evaluation and identifies the most effective
swarm intelligence methods for dealing with the problem.

This study employs an Improved Grey Wolf Optimization
(IGWO) algorithm for the optimal placement of drone
base stations (DBSs) within 6G cellular networks, with the
primary objective of minimizing network power
consumption. Owing to its high capability in navigating
complex, high-dimensional search spaces, the IGWO
algorithm rapidly converges toward optimal solutions.
This characteristic proves particularly advantageous for
the placement of DBSs, as it significantly reduces
computational time while achieving near-optimal
configurations. Furthermore, the IGWO algorithm
maintains a balance between local exploitation and global
exploration. This adaptive balance mitigates the risk of
entrapment in local optima and facilitates the discovery of
more globally efficient placement strategies for the DBSs.
The key contributions of this study include:

An optimization framework is formulated to minimize the
average power consumption of ground wusers by
strategically deploying DBSs. Given the high-dimensional
and nonlinear nature of the problem space, the Improved
Gray Wolf Optimization (IGWO) algorithm, rooted in
swarm intelligence, is utilized. The algorithm adaptively
maintains a dynamic balance between exploration and
exploitation, thereby reducing the likelihood of premature
convergence and enhancing the algorithm’s ability to
approximate the global optimum effectively.

A dynamic weighting mechanism is introduced to
reinforce gradual exploitation. In this mechanism, the
weights assigned to the alpha, beta, and delta wolves are
updated iteratively using exponential functions. As the
iterations progress, increased emphasis is placed on the
alpha wolf’s position, thereby enhancing the algorithm’s
ability to exploit the most promising solution discovered
thus far and leading to more precise convergence behavior.
A dynamic control structure is also developed to gradually
intensify the influence of elite solutions over time. Unlike
conventional approaches that uniformly aggregate the
guidance from all reference wolves, this method employs a
targeted weighting strategy. This allows the search process
to be progressively steered toward more reliable regions of
the solution space. Such structural modification in
information aggregation significantly enhances the
algorithm’s performance in complex and dynamic wireless
communication environments.

The efficacy of collective intelligence-based techniques
for identifying the optimal position of drone base stations
has been assessed through extensive simulations. The
superiority of the suggested approach in reducing average
power consumption has been demonstrated by a
comparative  analysis  conducted under  various
environment circumstances, search agent counts, and user
densities.

The remainder of this paper is organized as follows: The
suggested methodology is presented in Section 2. The
simulation settings and performance evaluation processes
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are described in Section 3, and the paper's conclusion and
future research prospects are outlined in Section 4.

2- Proposed Method

The primary objective of this study is to propose an
effective methodology for the optimal placement of drone
base stations (DBSs) within 6G cellular networks, aiming
to minimize overall network power consumption. To
achieve this, an Improved Gray Wolf Optimization
(IGWO) algorithm is employed. The IGWO algorithm
maintains an effective trade-off between local exploitation
and global exploration. This balance significantly
contributes to avoiding local optima and facilitates the
discovery of more efficient deployment strategies for
DBSs. Owing to its high flexibility, IGWO exhibits strong
adaptability to dynamic network environments and
variable conditions—such as fluctuating user densities and
evolving network demands—allowing it to consistently
determine optimal base station locations in real time.
Moreover, compared to conventional metaheuristic
approaches, the IGWO algorithm demonstrates greater
stability in producing reliable solutions and shows robust
performance under the diverse challenges inherent in 6G
communication networks.

2-1- System Model

This section outlines the system model used for evaluating
the service provisioning capabilities of DBSs to Internet of
Things (IoT) devices. The conceptual system architecture
is illustrated in Figure 1. In the presented structure
Sdeviee={1,2,...,s} denotes the set of [oT devices randomly
distributed within a two-dimensional area, and
Kpes={1,2,....k} represents the set of DBSs deployed to
serve these devices. Each DBS hovers above the device
layer.

Fig.1. Conceptual System Model

Traditional channel models are insufficient for accurately
simulating air-to-ground (AtG) communication due to the
altitude variability of DBSs. Instead, two primary link

types are considered for modeling the relationship between
DBSs and IoT devices: Line-of-Sight (LoS) and Non-
Line-of-Sight (NLoS) connections.

2-2- Air-to-Ground Propagation Model

The probability of establishing a Line-of-Sight (LoS) link
between the k-th DBS and the s-th IoT device is given by
the following expression:

1
1+aexp [—ﬁ(arctan (%)—a)],

P(hg.dis) = (1)

where « and 8 are environment-dependent parameters, hy,
denotes the k-th DBS altitude, and d ¢ is the horizontal
distance between the DBS and the IoT device, defined as:

dk.s = \/(xk - xs)z + (yk - ys)z' ()

Here, (. xx) and (ys. x,) represent the 2D coordinates of
the k-th DBS and the IoT device, respectively.

Using the LoS and NLoS probabilities, the path loss can
be modeled as:

PL (hy.ds) = 20log (A + dZ,) + AP(hy.dis) + B (3)

where:
A = Nos — NMnLoss 4

B = 20log (Mf”) + NNLos- )

Cc
In these equations:
e 7 represents the mean additional path loss;
e A is the differential loss between LoS and NLoS
conditions;
e f. is the carrier frequency (in Hz);
e ¢ denotes the speed of light.

2-3- Objective Function for

Placement

Optimal DBS

The central goal of this research is to determine optimal
placements for the DBSs that minimize the total power
consumption of the network. This objective is formulated
as an optimization problem and is addressed using the
proposed IGWO metaheuristic algorithm. Given that the
objective function plays a pivotal role in the design of any
metaheuristic optimization strategy, it is formally defined
in this section to guide the optimization process effectively.

2-3-1 Minimizing Network Power Consumption

The objective of this section is to present a comprehensive
model for calculating the total power consumption of the
network, incorporating the energy required for electronic
processing, average data transmission time, path loss, and
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other real-world parameters. To this end, the transmitter’s
power consumption can be considered to comprise two
components: a fixed amount of electronic energy required
for processing, and the transmission energy component,
which depends on the path loss. Consequently, the average
power consumption for communication between the s-th
user device and the £-th Drone Base Station (DBS) can be
expressed as:

K
PCOnSaye(hk' ds) = (Eelec + gamp—tx PL (hk ds)) ' E (6)

where, E,,. is the energy required for processing each bit
electronically and is measured in joules (J), €zmp—tx
represents the amplifier efficiency needed to compensate
for the path loss during transmission and is also expressed
in joules (J), K is the number of bits transmitted, and Ty,
denotes the average data transmission time in seconds (s).
It is important to note that &4, ¢, quantifies the energy
consumed per bit to overcome the attenuation in the signal
path and is determined based on the path loss intensity PL.
Accordingly, the total average energy consumed across the
network—borne by the devices—can be minimized by
optimizing the placement of DBSs. Assuming that s
indexes the devices and & indexes the DBSs, and that each
device connects to the nearest DBS, the optimization
problem can be formulated as follows:

K S
k=1 23=1 Pconsgye (Nk-ds)

minimize
{x.y.h} S
subject to: C1: Xpmin < XK < Xpmax VK @)

C2: Ymin < yg < Yimax- Yk
C3: hppin < hE < My VK

Here, x, y and h represent the 3D spatial coordinates of

every DBS, while Xpmin /Xmax » Ymin/Ymax a0d hopin/Rinax
define the boundaries of the deployment region.

2-4- Optimal Placement of Drone Base Stations
Using the Improved Grey Wolf Optimization
(IGWO) Algorithm

In this study, the Improved Grey Wolf Optimization
(IGWO) algorithm is employed to determine the optimal
positioning of drone base stations (DBSs), with the aim of
minimizing the power consumption of Internet of Things
(IoT) user devices as defined by the objective functions.
The Grey Wolf Optimizer (GWO) is a nature-inspired
metaheuristic algorithm that mimics the social hierarchy
and hunting behavior of grey wolves in the wild. It is
particularly effective for solving complex optimization
problems. In this algorithm, a population of "wolves"
represents candidate solutions in the search space. The
optimization process begins with evaluating each wolf’s

position and identifying the top solutions, referred to as the
alpha, beta, and delta wolves. The leaders direct the other
wolves as they iteratively update their positions based on
these until certain termination conditions are satisfied, like
a convergence threshold or maximum number of iterations.
The final position of the alpha wolf is considered the
optimal solution. Due to its simplicity and efficiency,
GWO has attracted considerable interest in both academic
and industrial optimization tasks. The main procedural
steps of the IGWO algorithm are as follows:

Step 1: Initialization of Parameters

Initially, key factors including the number of wolves (N),
number of variables (problem dimensions, D), number of
iterations (7), and the control vector (@) are defined. The
control vector a, which linearly decreases from 2 to 0 over
the iterations, balances the exploration and exploitation
phases of the algorithm. The decrease in the value of a
enables the algorithm to initially conduct a wide-ranging
search (exploration), and later to focus on the best regions
(exploitation). This vector is defined as follows:

i) =2- % . (8)
Step 2: Population

After initializing the parameters, a population of grey
wolves—representing potential solutions—is randomly
generated within the search space. The initial position of
each wolf is determined as follows:

X;j =rand(0.1) - (ub; — lb;) + Ib;, 9)

where:
e X;jis the j-th variable for the i-th wollf,
e ub; and lb; are the upper and lower bounds of the
j-th variable, and
o rand(0.1) is a uniformly distributed random
number between 0 and 1.

Step 3: Evaluation of Objective Function

Each wolf’s position is evaluated using the objective
function:

fi=f&X) . (10)
Step 4: Social Hierarchy Assignment

This step reflects the social behavior of grey wolves in
nature, where the leader directs the hunting group. In this
stage, based on the fitness values obtained in the previous
step, the wolves are divided into four categories: Alpha,
Beta, Delta, and Omega. The Alpha, Beta, and Delta
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wolves act as the leaders of the hunt, while the Omega
wolves follow the leaders. Therefore, the wolf with the
best fitness value is selected as the Alpha wolf X, and the
wolves with the second and third best fitness values are
selected as the Beta X and Delta X5 wolves, respectively.
The remaining wolves are classified as Omega wolves X .

Step 5: Modeling the Hunting Behavior and Position
Update of Grey Wolves

The alpha, beta, and delta wolves' positions are used to
update the wolves' positions at this point. To facilitate this,
the control vectors A and C are defined as follows:

A=2-d-#-ad, (11)
C=2-%. (12)

Here, 7, and 7, are randomly generated vectors of [0,1]°.
Next, the relative distance and estimated positions with
respect to the alpha, beta, and delta wolves are calculated
using the following relations:

Do=|C-X,—X| = X, =X,— 4, D, , (13)
S I L SE AL S
Ds=|Cs- Xs—X| = X;= Xs— A5 Ds. (15)

Finally, the wolves’ final positions are updated according
to following equation:

Xt+1)= @ (16)

As evident in the Eq. (16) above, the influence of the alpha,
beta, and delta wolves is equally weighted in determining
the optimal position. However, since the alpha wolf
typically represents a better solution than the beta, and the
beta better than the delta, assigning adaptive weights to
each of their contributions can lead to more effective
convergence toward the global optimum.

In the proposed IGWO algorithm, the initial weights
assigned to the alpha, beta, and delta wolves are equal,
which supports the exploration phase by allowing the
algorithm to broadly search the solution space. To enhance
the exploitation phase over time, these weights are
adaptively adjusted throughout the iterations. Specifically,
the weight of the alpha wolf gradually increases, directing
more focus on the region near the current best solution,
while the weights of the beta and delta wolves decrease,
thus reducing their influence. This adaptive weighting
strategy ensures a balanced transition from exploration to
exploitation, allowing the algorithm to converge
effectively to an optimal or near-optimal solution by the
end of the search process. The updated position equation
with adaptive weighting becomes:
R(t+1)= Wa(t))?l(t)w,;(t;)?z(t)+w$(t))?3(t)’

(17)
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where w,, wg, and ws are the time-dependent adaptive
weights for the alpha, beta, and delta wolves, respectively,
defined as:

5t
Wa(t) = Wa_ini + (lt_ Wa_ini) ' (1 - e_?) > (18)
2
wg(t) =wp i "€ T, (19)
4t
ws(t) = Ws inize T . (20)

Here, Wq ini » Wp_ini » and Ws in; represent the initial
weights for updating the positions of the Alpha, Beta, and
Delta wolves. At the beginning of the algorithm, these
initial weights are considered equal, following the standard
GWO procedure. However, as the algorithm progresses,
the weights w, (t), wg(t) and ws(t) change over time to
enhance the algorithm’s exploitation capability.
Specifically, the weight for the Alpha wolf, which has the
best position, increases exponentially. Meanwhile, the
weights for the Beta and Delta wolves gradually decrease
as the algorithm advances. The exponential coefficients
are tuned such that the slope of the decrease in wg(t) is
less steep than the slope of the decrease in wg(t).

Step 6: [Iterative Execution Until
Criterion Is Met

Convergence

Steps 3 through 5 are executed iteratively until the
stopping condition—typically the maximum number of
iterations—is satisfied. Upon termination, the final
position of the alpha wolf )?a, representing the optimal
coordinates of the drone base stations, is returned as the
best solution obtained by the Improved Grey Wolf
Optimization algorithm.

The pseudo-code of proposed method is illustrated in
Algorithm 1.

2-4-1Computational complexity of the proposed IGWO

The computational complexity of the proposed IGWO
algorithm is determined by the population size N, search
space dimension D, and maximum number of iterations T.
In each iteration, the algorithm evaluates the objective
function for all search agents and updates their positions,
leading to a total complexity of O(NXDXT). The
additional adaptive weighting and parameter control
mechanisms require only simple arithmetic operations,
resulting in negligible extra cost. Hence, the proposed
IGWO maintains a linear computational complexity
similar to the standard GWO.

Algorithm 1: Improved Grey Wolf Optimization (IGWO)

Input:
- Objective function f(x)
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- Search space dimension D

- Population size N

- Maximum iterations T
Output:

- Best solution x, (corresponding to minimum power
consumption)

1: Initialize positions of N grey wolves {xi}, i = 1,...,N randomly
within bounds
2: Evaluate fitness f(xi) for all wolves
3: Identify three best solutions: a (best), B (second best), & (third
best)
4: Set iteration counter t = 1
S: while (t<T) do
6:  Update control parameter a(t) using adaptive rule
7:  For each wolfi=1to N do
8: Compute coefficient vectors A = 2ar; —a, C = 2r,
9 Calculate distances to leaders:
Dg = |Cy - Xo — X
Dg = |C; - Xp — Xi
Ds =|Cs- X5 — Xil
10: Update candidate position:
Xy =Xo— A1 Dy
XZ = Xﬁ - A1 . Dﬁ
X3 =Xs— A1 Ds
11: Update position:
Xi(t 4 1) _ wa(t)X1+wB(3t)Xz+W5(t)X3
(where wy, wg, ws are dynamic weights)
12:  end for
13:  Evaluate new fitness values f(xi)
14:  Update a, B, o if better solutions are found
15: t=t+1
16: end while
17: Return x,, as the best solution

environmental modeling, simulation parameters, and
parameters related to optimization algorithms are inspired
by reference [15], which deals with the optimal location of
DBSs using meta-heuristic algorithms in
telecommunication networks. Also, the simulations were
carried out using MATLAB 2023a. In addition all
simulation results presented in the paper are obtained by
averaging over 50 independent runs of the proposed
algorithm to account for its stochastic nature and ensure
reliability.

Table 1: Propagation Parameters in Different Environments

Environment a B NLos NN s
Urban 9.61 0.16 1 20
Suburban 4.88 0.43 0.1 21
Dense Urban 12.08 0.11 1.6 23
High-raise 2723 0.08 23 34

3- Performance Evaluation

The effectiveness of the suggested approach in
determining the best location for drone base stations
(DBSs) under varied parameter settings is thoroughly
evaluated in this section. The proposed approach is
assessed through numerical results derived from extensive
software-based simulations. The conducted experiments
investigate the impact of several key factors, including the
number of users, the number of search agents (population
size), the number of iterations (generations), and different
propagation environments—namely suburban, urban,
dense urban, and high-rise urban—on path loss and power
consumption in the Improved Grey Wolf Optimization
(IGWO) algorithm. Table 1 provides a summary of the
different parameters related to various environments. It
should be noted that the parameters related to

3-1- Path Loss Evaluation

In this section, the effect of four different factors on path
loss is investigated: population size in optimization
algorithms, maximum number of iterations, type of
propagation environment, and the number of users.

Experiment 1: Impact of Propagation Environment on
Path Loss

This experiment evaluates the impact of different
propagation environments on the average path loss. For
this purpose, the number of users is set to 20, the
maximum number of iterations is 100, and the population
size (number of search agents) is 25. The detailed
parameters of this experiment are represented in Table 2.

Table 2: Experiment 1 Simulation Parameters

Parameter Value
Number of Users 20
Maximum number of 100
iterations

Urban- suburban-
dense urban, high-
rise urban

Various Environments

Number of Search Agent 25

Figure 2 illustrates the effect of different propagation
environments—suburban, urban, dense urban, and high-
rise urban—on the path loss within the network. As shown
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in the figure, suburban environments exhibit the lowest
path loss across all optimization algorithms, while dense
urban environments result in the highest path loss.
Moreover, it is observed that the proposed IGWO method
consistently yields lower path loss compared to other
optimization techniques across all environment types,
indicating the algorithm’s robustness and adaptability to
diverse propagation conditions.

100
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Fig.2. Effect of Path Loss in Various Environments for Different
Approaches

Experiment 2: Impact of Maximum Number of
Iterations on Path Loss

This investigation assesses how varying the maximum
number of iterations (generations) affects the overall path
loss. The simulation parameters used in this experiment
are listed in Table 3.

Table 3: Experiment 2 Simulation Parameters

Parameter Value

Number of Users 20

Maximum number of 50, 100, 200, 500

1terations
Various Environments Urban
Number of Search Agent 25

As illustrated in Figure 3, the path loss decreases with an
increasing number of iterations for all metaheuristic
algorithms. This demonstrates that increasing the number
of iterations enhances the convergence and performance of
optimization methods. Furthermore, the lowest recorded
path loss of 86.8 dB is achieved by the proposed Improved
Grey Wolf Optimization (IGWO) when the number of
iterations reaches 500, highlighting the superior efficiency

of the proposed algorithm in minimizing power
consumption compared to alternative approaches.

100

Ecs [Iewo [MAssa IMIGWO
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Fig.3. Effect of the Maximum Iterations on Path Loss for Different
Methods

Experiment 3: Impact of the Number of Search Agents
on Path Loss

The third investigation investigates the effect of varying
the count of search agents on path loss for different
metaheuristic algorithms, including the proposed IGWO
method. The simulation considers 20 users, a maximum of
100 iterations, and an urban propagation environment. The
detailed parameters of this experiment are shown in Table
4.

Table 4. Experiment 3 Simulation Parameters

Parameter Value
Number of Users 20
Maximum number of iterations 100
Various Environments Urban

Number of Search Agent 5, 25,50, 75, 100

Figure 4 depicts the effect of the number of search agents
on the path loss. As seen in the figure, increasing the
number of agents generally results in a reduction in path
loss. The proposed IGWO method consistently achieves
the lowest path loss across various population sizes
compared to the other approaches.
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Experiment 4: Impact of User Counts on Path Loss
Based on the first simulation scenario, this investigation
assesses how the count of users affects the suggested
method's performance. While keeping the maximum
number of iterations, propagation environment, and
number of search agents constant, the number of users is
varied to assess its impact on the path loss. The simulation
parameters are summarized in Table 5.

Table 5: Experiment 4 Simulation Parameters

Parameter Value

Number of Users 10, 20, 30, 40, 50

Maximum number of iterations 100
Various Environments urban
Number of Search Agent 25

As shown in Figure 5, the path loss increases with the
number of users. Additionally, it is observed that the
proposed IGWO algorithm consistently yields the lowest
path loss, particularly for 10 users, further demonstrating
its ability to adapt and scale across different user densities.
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Fig.5. Effect of the User Counts on Path Loss for Different
Methods
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3-2- [Evaluation of Average Power Consumption

This section investigates how various factors influence the
average power consumption of deployed drones across
four experiments. These include population size, number
of iterations, propagation environment, and number of
users.

Experiment 1: Effect of Propagation Environment on
Power Consumption

Figure 6 presents the average power consumption for
various propagation environments. The results show that
the proposed IGWO algorithm consumes the least energy
across all environments, with the lowest power
consumption of 44 mW observed in the suburban scenario.
Conversely, the highest power consumption (45.8 mW) is
observed for the PSO algorithm in high-rise urban areas.
Specifically, the simulation results demonstrate that the
proposed method achieves a remarkable superiority over
other optimization algorithms, showing more than a 2%
improvement compared to the best among them—the
standard GWO algorithm—thereby confirming its
effectiveness and efficiency in low-power network
scenarios. Furthermore, power consumption in suburban
environments is generally lower for all algorithms,
confirming the lower propagation loss in such
environments.
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Consumption for Different Methods

Experiment 2: Effect of Maximum Number of
Iterations on Power Consumption

As shown in Figure 7, increasing the number of iterations
significantly reduces average power consumption for all
algorithms. The IGWO method achieves the minimum
value of 44.6 mW at 500 iterations, while PSO shows the
highest power consumption of 45.3 mW at 50 iterations.
The results confirm that more iterations allow the
optimization process to converge toward more energy-

efficient deployments.
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Fig.7. Effect of Maximum Iterations on Power Consumption for
Different Methods

Experiment 3: Effect of Number of Search Agents on
Power Consumption

In Figure 8, the results reveal that increasing the number
of search agents reduces the average power consumption,
as more agents improve the search space exploration and
chances of finding optimal solutions. The IGWO

consistently outperforms other methods, maintaining the
lowest power consumption across all population sizes,
demonstrating its efficient exploration and exploitation
balance.
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Fig.8. Effect of the Number of Search Agents on Power
Consumption for Different Methods

Experiment 4: Effect of Number of Users on Power
Consumption

As depicted in Figure 9, power consumption increases
with the number of users, which is expected due to the
higher = communication and coverage demands.
Nevertheless, the IGWO algorithm consistently consumes
less energy than other methods across all user counts. This
underscores the method's scalability and adaptability,
primarily due to its dynamic balance between exploration

and exploitation.
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4- Conclusion

In this study, an improved Gray Wolf Optimization
(IGWO) algorithm was developed to address the urgent
challenge of energy-efficient deployment of Drone Base
Stations (DBSs) in 6G networks. The proposed IGWO
algorithm, featuring adaptive weighting mechanisms and
dynamic control structures, demonstrated enhanced
capacity to explore the complex, multivariate search
spaces required for effective DBS deployment. Several
simulation experiments were conducted under varying
conditions, including different propagation environments,
population sizes, iteration counts, and user densities. The
presented  strategy  consistently  exhibited  strong
performance and stability across all simulations. Notably,
the IGWO algorithm achieved the lowest path loss values
across all propagation environments, with suburban
scenarios yielding the lowest overall path loss. In the
urban environment simulation, the IGWO method
generated a path loss of only 86.8 dB after 500 iterations,
outperforming traditional optimization methods. Analysis
of average power consumption further confirmed that
IGWO enables significant energy savings. The algorithm
achieved an average power consumption of 44 mW in
suburban areas, while also maintaining strong performance
in dense and high-rise urban environments.

Increasing the number of search agents and iterations
further improved the algorithm’s  performance,
demonstrating its scalability and convergence efficiency.
Even as user demand increased, the power consumption of
IGWO remained systematically lower than that of all other
optimization approaches. Future research could explore
mobility models, examine temporal variations in user
distribution, and investigate integrated optimization
strategies to further enhance overall network performance.
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