A Comprehensive Survey of Federated Learning for Enhanced Privacy in the Intrusion Detection System
الموضوعات : Machine learning
Dattatray Raghunath Kale
1
,
Swati Shirke-Deshmukh
2
,
Amolkumar Jadhav
3
,
Shrihari Khatawkar
4
,
Sunny Mohite
5
,
Sarang Patil
6
,
Madhav Salunkhe
7
,
Rahul Sonkamble
8
1 - Computer Science & Engineering –Artificial Intelligence & Machine Learning Department, Pimpri Chinchwad University, Pune, Maharashtra, India
2 - Department of Computer Science & Engineering, Pimpri Chinchwad University, Pune, Maharashtra, India
3 - Computer Science and Engineering D.Y.Patil College of Engineering and Technology, Kolhapur Maharashtra, India
4 - Computer Science and Engineering, Annasaheb Dange College of Engineering and Technology, Ashta India
5 - D Y Patil College of Engineering and Technology, Kolhapur, India
6 - Amity School of Engineering & Technology, Amity University Mumbai
7 - Annasaheb Dange College of Engineering and Technology Ashta
8 - Department of Computer Science & Engineering, Pimpri Chinchwad University, Pune, Maharashtra, India
الکلمات المفتاحية: Federated Learning, Intrusion Detection, Data Privacy, Cyber security,
ملخص المقالة :
This comprehensive survey uses Federated Learning (FL) as a lens to examine how intrusion detection privacy is changing. The increasing number of interconnected systems and the growing risk of cyber intrusions make it critical to strike a balance between efficient detection and protecting personal privacy. Decentralized machine learning paradigms like federated learning present a viable way to handle this difficult balance. The analysis systematically looks at the improvements in privacy-preserving intrusion detection that FL approaches have brought about. It clarifies FL's fundamental ideas and highlights its ability to train models cooperatively among dispersed nodes while protecting sensitive data. The study explores the various uses of FL in relation to security monitoring systems, emphasizing significant innovations and contributions. In addition, the review offers a detailed examination of how FL integrates with current intrusion detection techniques, illuminating the synergies that result in increased efficiency and accuracy. It explains how this paradigm shift allays worries about centralized storage of data by handling the complex relationship between FL and privacy. This paper ends by summarizing the cutting-edge research in Federated Learning for improved privacy in intrusion detection. It is an essential tool for academics, industry professionals, and decision-makers who want to understand the complex dynamics of FL as a strong defense against cyberattacks that are always changing and compromising personal information. FL in relation to security monitoring systems
[1] Kurniabudi, K., Purnama, B., Sharipuddin, S., Darmawijoyo, D., Stiawan, D., Samsuryadi, S., Heryanto, A., & Budiarto, R. (2019). Network anomaly detection research: a survey. Indonesian Journal of Electrical Engineering and Informatics (IJEEI).
[2] Manan, I., Rehman, F., Sharif, H., Ali, C.N., Ali, R.R., & Liaqat, A. (2023). Cyber Security Intrusion Detection Using Deep Learning Approaches, Datasets, Bot-IOT Dataset. 2023 4th International Conference on Advancements in Computational Sciences (ICACS), 1-5.
[3] Lánský, J., Ali, S., Mohammadi, M., Majeed, M.K., Karim, S.H., Rashidi, S., Hosseinzadeh, M., & Rahmani, A.M. (2021). Deep Learning-Based Intrusion Detection Systems: A Systematic Review. IEEE Access, 9, 101574-101599.
[4] Tyagi, S., Rajput, I.S., & Pandey, R. (2023). Federated learning: Applications, Security hazards and Defense measures. 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), 477-482.
[5] Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., & Bacon, D. (2016). Federated Learning: Strategies for Improving Communication Efficiency. ArXiv, abs/1610.05492
[6] Li, T., Sahu, A., Talwalkar, A., & Smith, V. (2019). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37, 50-60.
[7] Kumar, D.A., & Venugopalan, S.R. (2017). INTRUSION DETECTION SYSTEMS: A REVIEW. International Journal of Advanced Research in Computer Science, 8, 356-370.
[8] Gan, K.B. (2018). Intrusion Detection Systems: Principles And Perspectives. Journal of Multidisciplinary Engineering Science Studies (JMESS) ISSN: 2458-925X Vol. 4 Issue 11, November – 2018.
[9] Lunt, Teresa F. “Foundations for Intrusion Detection?” CSFW (2000).
[10] Mukkamala, S., Sung, A.H., & Abraham, A. (2005). Designing Intrusion Detection Systems: Architectures, Challenges and Perspectives.
[11] Pharate, A., Bhat, H., Shilimkar, V., & Mhetre, N.A. (2015). Classification of Intrusion Detection System. International Journal of Computer Applications, 118, 23-26.
[12] Majeed, N. (2021). A Review and Classification of Intrusion Detection System in Data Engineering
[13] Wankhede, R., & Chole, V. (2016). Intrusion Detection System using Classification Technique. International Journal of Computer Applications, 139, 25-28.
[14] Niksefat, S., Kaghazgaran, P., & Sadeghiyan, B. (2017). Privacy issues in intrusion detection systems: A taxonomy, survey and future directions. Comput. Sci. Rev., 25, 69-78.
[15] Zakaria, El, Houda., Abdelhakim, Hafid., Lyes, Khoukhi. (2023). MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain. IEEE Transactions on Network Science and Engineering, 10:1985-2001. doi: 10.1109/TNSE.2023.3237367.
[16] Qingyuan, Lin., Rui, Ming., Kailing, Zhang., Haibo, Luo. (2022). Privacy-Enhanced Intrusion Detection and Defense for Cyber-Physical Systems: A Deep Reinforcement Learning Approach. Security and Communication Networks doi: 10.1155/2022/4996427.
[17] Shuzhen, Chen., Yangyang, Wang., Dongxiao, Yu., Ju, Ren., Congan, Xu., Yanwei, Zheng. (2023). Privacy-Enhanced Decentralized Federated Learning at Dynamic Edge. IEEE Transactions on Computers, doi: 10.1109/TC.2023.3239542
[18] (2023). Federated Learning With Privacy-Preserving Ensemble Attention Distillation. IEEE Transactions on Medical Imaging, doi: 10.1109/tmi.2022.3213244
[19] Spangler, Steven, R. (2023). Privacy-Enhancing Technologies in Federated Learning for the Internet of Healthcare Things: A Survey. Electronics, doi: 10.3390/electronics12122703.
[20]Elhussein, Ahmed, and Gamze Gursoy. "Privacy-preserving patient clustering for personalized federated learning." arXiv preprint arXiv:2307.08847 (2023).
[21] Yashuo, Wu., Carla-Fabiana, Chiasserini., Francesco, Malandrino., Marco, Levorato. (2023). Invited Paper: Enhancing Privacy in Federated Learning via Early Exit. doi: 10.1145/3584684.3597274
[22] Tomás Martínez Beltrán, Enrique, et al. "Fedstellar: A Platform for Decentralized Federated Learning." arXiv e-prints (2023): arXiv-2306
[23] Federated Learning for IoT Devices with Domain Generalization. IEEE Internet of Things Journal, doi: 10.1109/jiot.2023.3234977
[24] Xun, Yang., Shu-wen, Xiang., Changgen, Peng., Weijie, Tan., Zhen, Li., Ningbo, Wu., Yan, Zhou. (2023). Federated Learning Incentive Mechanism Design via Shapley Value and Pareto Optimality. Axioms, 12(7):636-636. doi: 10.3390/axioms12070636
[25] Cui, Yangguang, et al. "Optimizing training efficiency and cost of hierarchical federated learning in heterogeneous mobile-edge cloud computing." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).
[26] Zhang, J., Luo, C., Carpenter, M., & Min, G. (2022). Federated Learning for Distributed IIoT Intrusion Detection using Transfer Approaches. IEEE Transactions on Industrial Informatics.
[27] Ana, Cholakoska., Hristijan, Gjoreski., Valentin, Rakovic., Daniel, Denkovski., Marija, Kalendar., B., Pfitzner., Bert, Arnrich. (2023). Federated Learning for Network Intrusion Detection in Ambient Assisted Living Environments. IEEE Internet Computing, 27:15-22. doi: 10.1109/MIC.2023.3264700
[28] Nie, J., Xiao, D., Yang, L., & Wu, W. (2023). FedCME: Client Matching and Classifier Exchanging to Handle Data Heterogeneity in Federated Learning. arXiv preprint arXiv:2307.08574.
[29] Viktor, Valadi., Xinchi, Qiu., Pedro, Gusmão., Nicholas, D., Lane., Mina, Alibeigi. (2023). FedVal: Different good or different bad in federated learning. arXiv.org,doi: 10.48550/arXiv.2306.04040
[30] Hu, G., Teng, Y., Wang, N., & Yu, F. R. (2023). Clustered Data Sharing for Non-IID Federated Learning over Wireless Networks. arXiv preprint arXiv:2302.10747.
[31] Jianbin, Li., Xin, Tong., Jinwei, Liu., Long, Cheng. (2023). An Efficient Federated Learning System for Network Intrusion Detection. IEEE Systems Journal, 17:2455-2464. doi: 10.1109/JSYST.2023.3236995
[32] Nakıp, M., Gül, B. C., & Gelenbe, E. (2023). Decentralized Online Federated G-Network Learning for Lightweight Intrusion Detection. arXiv preprint arXiv:2306.13029.
[33] Belarbi, O., Spyridopoulos, T., Anthi, E., Mavromatis, I., Carnelli, P., & Khan, A. (2023). Federated Deep Learning for Intrusion Detection in IoT Networks. In CEUR Workshop Proc (Vol. 3125, pp. 85-99).
[34] Campos, E.M., Saura, P.F., González-Vidal, A., Ramos, J.L., Bernabé, J.B., Baldini, G., & Gómez-Skarmeta, A.F. (2021). Evaluating Federated Learning for Intrusion Detection in Internet of Things: Review and Challenges. ArXiv, abs/2108.00974
[35] Ferrag, M.A., Friha, O., Maglaras, L., Janicke, H., & Shu, L. (2021). Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis. IEEE Access, PP, 1-1
[36] Alazab, M., Rm, S.P., M, P., Maddikunta, P.K., Gadekallu, T.R., & Pham, V.Q. (2022). Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Transactions on Industrial Informatics, 18, 3501-3509
[37] Chatterjee, S., & Hanawal, M.K. (2021). Federated Learning for Intrusion Detection in IoT Security: A Hybrid Ensemble Approach. ArXiv, abs/2106.15349.
[38] Ruzafa-Alcazar, P., Fernandez-Saura, P., Marmol-Campos, E., González-Vidal, A., Hernández-Ramos, J.L., Bernal-Bernabe, J., & Skarmeta, A.F. (2023). Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT. IEEE Transactions on Industrial Informatics, 19, 1145-1154
[39] Alazab, A., Khraisat, A., Singh, S., Jan, T., & Alazab, M. (2023). Enhancing Privacy-Preserving Intrusion Detection through Federated Learning. Electronics
[40] Al-Marri, N.A., Ciftler, B.S., & Abdallah, M.M. (2020). Federated Mimic Learning for Privacy Preserving Intrusion Detection. 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 1-6.
[41] Yang, W., Liu, B., Lu, C., & Yu, N. (2020). Privacy Preserving on Updated Parameters in Federated Learning. Proceedings of the ACM Turing Celebration Conference – China
[42] Zhao, X., Wang, L., Wang, L., & Lu, Z. (2022). A Privacy-Enhanced Federated Learning Scheme with Identity Protection. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 1188-1195.
[43] Elhussein, A., & Gursoy, G. (2023). Privacy-preserving patient clustering for personalized federated learning. arXiv preprint arXiv:2307.08847.
[44] Lingjie, Zhang., Hai, Zhang. (2023). Privacy-Preserving Federated Learning on Lattice Quantization. International Journal of Wavelets, Multiresolution and Information Processing, doi: 10.1142/s0219691323500200
[45] Ruzafa-Alcázar, P., Fernández-Saura, P., Mármol-Campos, E., González-Vidal, A., Hernández-Ramos, J. L., Bernal-Bernabe, J., & Skarmeta, A. F. (2021). Intrusion detection based on privacy-preserving federated learning for the industrial IoT. IEEE Transactions on Industrial Informatics, 19(2), 1145-1154.
[46] Yongfei, Liu., Guangjun, Wu., Wenyuan, Zhang., Jun, Li. (2023). Federated Learning-Based Intrusion Detection on Non-IID Data. Lecture Notes in Computer Science, 313-329. doi: 10.1007/978-3-031-22677-9_17
[47] Federated Deep Learning for Intrusion Detection in IoT Networks." null (2023). doi: 10.48550/arxiv.2306.02715
[48] Federated Learning for IoMT Applications: A Standardization and Benchmarking Framework of Intrusion Detection Systems." IEEE Journal of Biomedical and Health Informatics,undefined(2023).doi: 0.1109/jbhi.2022.3167256.
[49] Saadat, H., Aboumadi, A., Mohamed, A., Erbad, A., & Guizani, M. (2021). Hierarchical Federated Learning for Collaborative IDS in IoT Applications. 2021 10th Mediterranean Conference on Embedded Computing (MECO), 1-6.
[50] Lazzarini, Riccardo, Huaglory Tianfield, and Vassilis Charissis. "Federated Learning for IoT Intrusion Detection." AI 4.3 (2023): 509-530
[51] Tong, Q., Liang, G., & Bi, J. (2020). Effective Federated Adaptive Gradient Methods with Non-IID Decentralized Data. ArXiv, abs/2009.06557.
[52] Campos, E.M., Saura, P.F., González-Vidal, A., Ramos, J.L., Bernabé, J.B., Baldini, G., & Gómez-Skarmeta, A.F. (2021). Evaluating Federated Learning for Intrusion Detection in Internet of Things: Review and Challenges. ArXiv, abs/2108.00974.
[53] Kongyang, Chen., Xiaoxue, Zhang., Xiuhua, Zhou., Yatie, Xiao., Lei, Zhou. (2023). Privacy preserving federated learning for full heterogeneity.. Isa Transactions, doi: 10.1016/j.isatra.2023.04.020
[54] David, A., Bierbrauer., Nathaniel, D., Bastian. (2023). Data-efficient, federated learning for raw network traffic detection. 12538:125380Y-125380Y. doi: 10.1117/12.2663092
[55] Federated Learning for IoMT Applications: A Standardization and Benchmarking Framework of Intrusion Detection Systems." IEEE Journal of Biomedical and Health Informatics, undefined (2023). doi: 10.1109/jbhi.2022.3167256
[56] Md, Mamunur, Rashid., Shahriar, Usman, Khan., Fariha, Eusufzai., Md., Azharuddin, Redwan., Saifur, Rahman, Sabuj., Mahmoud, Elsharief. (2023). A Federated Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of Things Networks. Network, doi: 10.3390/network3010008
[57] Marulli, F., Verde, L., Marrone, S., Barone, R., & Biase, M.S. (2021). Evaluating Efficiency and Effectiveness of Federated Learning Approaches in Knowledge Extraction Tasks. 2021 International Joint Conference on Neural Networks (IJCNN), 1-6.
[58] Viktor, Valadi., Xinchi, Qiu., Pedro, Gusmão., Nicholas, D., Lane., Mina, Alibeigi. (2023). FedVal: Different good or different bad in federated learning. arXiv.org, doi: 10.48550/arXiv.2306.04040
[59] Wenjie, Song., Tongjiang, Yan. (2023). Federated Learning Framework for Blockchain based on Second-Order Precision. doi: 10.1109/BigComp57234.2023.00054
[60] Meng, Wang., Kai-An, Yu., Chunyang, Feng., Yiming, Qian., Kevin, Yingyin, Zou., Lianyu, Wang., Rick, Siow, Mong, Goh., Xinxing, Xu., Yong, Liu., Huazhu, Fu. (2023). TrFedDis: Trusted Federated Disentangling Network for Non-IID Domain Feature. arXiv.org, doi: 10.48550/arXiv.2301.12798
[61] Attota Dinesh Chowdary, et al An ensemble multi-view federated learning intrusion detection for IoT IEEE Access 9 (2021): 117734-117745.
[62] Zhao, R., Wang, Y., Xue, Z., Ohtsuki, T., Adebisi, B., & Gui, G. (2022). Semi-supervised federated learning based intrusion detection method for internet of things. IEEE Internet of Things Journal.
[63] Haolan, Liang., Dongqi, Liu., Xiangjun, Zeng., Chunxiao, Ye. (2023). An Intrusion Detection Method for Advanced Metering Infrastructure System Based on Federated Learning. Journal of modern power systems and clean energy, 11(3):927-937. doi: 10.35833/mpce.2021.000279
[64] Zhang, J., Luo, C., Carpenter, M., & Min, G. (2022). Federated Learning for Distributed IIoT Intrusion Detection using Transfer Approaches. IEEE Transactions on Industrial Informatics.
[65] Jiazhen, Zhang., Chunbo, Luo., Marcus, Carpenter., Geyong, Min. (2023). Federated Learning for Distributed IIoT Intrusion Detection Using Transfer Approaches. IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2022.3216575
[66] Othmane, Belarbi., Theodoros, Spyridopoulos., Eirini, Anthi., Ioannis, Mavromatis., Pietro, Edoardo, Carnelli., Aftab, Khan. (2023). Federated Deep Learning for Intrusion Detection in IoT Networks. arXiv.org, doi: 10.48550/arXiv.2306.02715
[67] Peng, Li. (2023). FedSD: A New Federated Learning Structure Used in Non-iid Data. doi: 10.1109/icassp49357.2023.10095595
[68] Zhibo, Wang., Yuting, Huang., Mengkai, Song., Libing, Wu., Feng, Xue., Kui, Ren. (2023). Poisoning-Assisted Property Inference Attack Against Federated Learning. IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2022.3196646
[69] Gang, Yan., Hao, Wang., Xu, Yuan., Jian, Li. (2023). DeFL: Defending against Model Poisoning Attacks in Federated Learning via Critical Learning Periods Awareness. Proceedings of the ... AAAI Conference on Artificial Intelligence, doi: 10.1609/aaai.v37i9.26271
[70] Pretom, Roy, Ovi., Aryya, Gangopadhyay., Robert, F., Erbacher., C., Busart. (2023). Confident federated learning to tackle label flipped data poisoning attacks. doi: 10.1117/12.2663911
[71] Léo, Lavaur., Marc-Oliver, Pahl., Yann, Busnel., Fabien, Autrel. (2022). The Evolution of Federated Learning-Based Intrusion Detection and Mitigation: A Survey. IEEE Transactions on Network and Service Management, doi: 10.1109/TNSM.2022.3177512
[72] Wu, X., Huang, F., Hu, Z., & Huang, H. (2023, June). Faster adaptive federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 9, pp. 10379-10387).
[73] Mills, J., Hu, J., Min, G., Jin, R., Zheng, S., & Wang, J. (2022). Accelerating federated learning with a global biased optimiser. IEEE Transactions on Computers.
[74] Rahulamathavan, Y., Herath, C., Liu, X., Lambotharan, S., & Maple, C. (2023). FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users. arXiv preprint arXiv:2306.05112
[75] Wenhao, Mou., Chunlei, Fu., Yan, Lei., Chunqiang, Hu. (2021). A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation.. doi: 10.1007/978-3-030-86130-8_16
[76] Subedi, R., Gaire, R. R., Ali, S., Nguyen, A., Stoyanov, D., & Bhattarai, B. (2023). A Client-server Deep Federated Learning for Cross-domain Surgical Image Segmentation. arXiv preprint arXiv:2306.08720
[77] Huang, W., Liu, J., Li, T., Ji, S., Wang, D., & Huang, T. (2022). FedCKE: Cross-Domain Knowledge Graph Embedding in Federated Learning. IEEE Transactions on Big Data.
[78] Liu, S., & Xu, F. (2023, May). Adaptive federated learning aggregation strategies based on mobile edge computing. In Third International Conference on Machine Learning and Computer Application (ICMLCA 2022) (Vol. 12636, pp. 65-73). SPIE
[79] Selamnia, Aymene et al. “Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning.” GLOBECOM 2022 - 2022 IEEE Global Communications Conference (2022): 2080-2085
[80] Yu, Rong and Peichun Li. “Toward Resource-Efficient Federated Learning in Mobile Edge Computing.” IEEE Network 35 (2021): 148-155.