Subject Areas : Machine learning
Dattatray Raghunath Kale
1
,
Swati Shirke-Deshmukh
2
,
Amolkumar Jadhav
3
,
Shrihari Khatawkar
4
,
Sunny Mohite
5
,
Sarang Patil
6
,
Madhav Salunkhe
7
,
Rahul Sonkamble
8
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
Keywords:
Abstract :
[1] Kurniabudi, K., Purnama, B., Sharipuddin, S., Darmawijoyo, D., Stiawan, D., Samsuryadi, S., Heryanto, A., & Budiarto, R. (2019). Network anomaly detection research: a survey. Indonesian Journal of Electrical Engineering and Informatics (IJEEI).
[2] Manan, I., Rehman, F., Sharif, H., Ali, C.N., Ali, R.R., & Liaqat, A. (2023). Cyber Security Intrusion Detection Using Deep Learning Approaches, Datasets, Bot-IOT Dataset. 2023 4th International Conference on Advancements in Computational Sciences (ICACS), 1-5.
[3] Lánský, J., Ali, S., Mohammadi, M., Majeed, M.K., Karim, S.H., Rashidi, S., Hosseinzadeh, M., & Rahmani, A.M. (2021). Deep Learning-Based Intrusion Detection Systems: A Systematic Review. IEEE Access, 9, 101574-101599.
[4] Tyagi, S., Rajput, I.S., & Pandey, R. (2023). Federated learning: Applications, Security hazards and Defense measures. 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), 477-482.
[5] Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., & Bacon, D. (2016). Federated Learning: Strategies for Improving Communication Efficiency. ArXiv, abs/1610.05492
[6] Li, T., Sahu, A., Talwalkar, A., & Smith, V. (2019). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37, 50-60.
[7] Kumar, D.A., & Venugopalan, S.R. (2017). INTRUSION DETECTION SYSTEMS: A REVIEW. International Journal of Advanced Research in Computer Science, 8, 356-370.
[8] Gan, K.B. (2018). Intrusion Detection Systems: Principles And Perspectives. Journal of Multidisciplinary Engineering Science Studies (JMESS) ISSN: 2458-925X Vol. 4 Issue 11, November – 2018.
[9] Lunt, Teresa F. “Foundations for Intrusion Detection?” CSFW (2000).
[10] Mukkamala, S., Sung, A.H., & Abraham, A. (2005). Designing Intrusion Detection Systems: Architectures, Challenges and Perspectives.
[11] Pharate, A., Bhat, H., Shilimkar, V., & Mhetre, N.A. (2015). Classification of Intrusion Detection System. International Journal of Computer Applications, 118, 23-26.
[12] Majeed, N. (2021). A Review and Classification of Intrusion Detection System in Data Engineering
[13] Wankhede, R., & Chole, V. (2016). Intrusion Detection System using Classification Technique. International Journal of Computer Applications, 139, 25-28.
[14] Niksefat, S., Kaghazgaran, P., & Sadeghiyan, B. (2017). Privacy issues in intrusion detection systems: A taxonomy, survey and future directions. Comput. Sci. Rev., 25, 69-78.
[15] Zakaria, El, Houda., Abdelhakim, Hafid., Lyes, Khoukhi. (2023). MiTFed: A Privacy Preserving Collaborative Network Attack Mitigation Framework Based on Federated Learning Using SDN and Blockchain. IEEE Transactions on Network Science and Engineering, 10:1985-2001. doi: 10.1109/TNSE.2023.3237367.
[16] Qingyuan, Lin., Rui, Ming., Kailing, Zhang., Haibo, Luo. (2022). Privacy-Enhanced Intrusion Detection and Defense for Cyber-Physical Systems: A Deep Reinforcement Learning Approach. Security and Communication Networks doi: 10.1155/2022/4996427.
[17] Shuzhen, Chen., Yangyang, Wang., Dongxiao, Yu., Ju, Ren., Congan, Xu., Yanwei, Zheng. (2023). Privacy-Enhanced Decentralized Federated Learning at Dynamic Edge. IEEE Transactions on Computers, doi: 10.1109/TC.2023.3239542
[18] (2023). Federated Learning With Privacy-Preserving Ensemble Attention Distillation. IEEE Transactions on Medical Imaging, doi: 10.1109/tmi.2022.3213244
[19] Spangler, Steven, R. (2023). Privacy-Enhancing Technologies in Federated Learning for the Internet of Healthcare Things: A Survey. Electronics, doi: 10.3390/electronics12122703.
[20]Elhussein, Ahmed, and Gamze Gursoy. "Privacy-preserving patient clustering for personalized federated learning." arXiv preprint arXiv:2307.08847 (2023).
[21] Yashuo, Wu., Carla-Fabiana, Chiasserini., Francesco, Malandrino., Marco, Levorato. (2023). Invited Paper: Enhancing Privacy in Federated Learning via Early Exit. doi: 10.1145/3584684.3597274
[22] Tomás Martínez Beltrán, Enrique, et al. "Fedstellar: A Platform for Decentralized Federated Learning." arXiv e-prints (2023): arXiv-2306
[23] Federated Learning for IoT Devices with Domain Generalization. IEEE Internet of Things Journal, doi: 10.1109/jiot.2023.3234977
[24] Xun, Yang., Shu-wen, Xiang., Changgen, Peng., Weijie, Tan., Zhen, Li., Ningbo, Wu., Yan, Zhou. (2023). Federated Learning Incentive Mechanism Design via Shapley Value and Pareto Optimality. Axioms, 12(7):636-636. doi: 10.3390/axioms12070636
[25] Cui, Yangguang, et al. "Optimizing training efficiency and cost of hierarchical federated learning in heterogeneous mobile-edge cloud computing." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).
[26] Zhang, J., Luo, C., Carpenter, M., & Min, G. (2022). Federated Learning for Distributed IIoT Intrusion Detection using Transfer Approaches. IEEE Transactions on Industrial Informatics.
[27] Ana, Cholakoska., Hristijan, Gjoreski., Valentin, Rakovic., Daniel, Denkovski., Marija, Kalendar., B., Pfitzner., Bert, Arnrich. (2023). Federated Learning for Network Intrusion Detection in Ambient Assisted Living Environments. IEEE Internet Computing, 27:15-22. doi: 10.1109/MIC.2023.3264700
[28] Nie, J., Xiao, D., Yang, L., & Wu, W. (2023). FedCME: Client Matching and Classifier Exchanging to Handle Data Heterogeneity in Federated Learning. arXiv preprint arXiv:2307.08574.
[29] Viktor, Valadi., Xinchi, Qiu., Pedro, Gusmão., Nicholas, D., Lane., Mina, Alibeigi. (2023). FedVal: Different good or different bad in federated learning. arXiv.org,doi: 10.48550/arXiv.2306.04040
[30] Hu, G., Teng, Y., Wang, N., & Yu, F. R. (2023). Clustered Data Sharing for Non-IID Federated Learning over Wireless Networks. arXiv preprint arXiv:2302.10747.
[31] Jianbin, Li., Xin, Tong., Jinwei, Liu., Long, Cheng. (2023). An Efficient Federated Learning System for Network Intrusion Detection. IEEE Systems Journal, 17:2455-2464. doi: 10.1109/JSYST.2023.3236995
[32] Nakıp, M., Gül, B. C., & Gelenbe, E. (2023). Decentralized Online Federated G-Network Learning for Lightweight Intrusion Detection. arXiv preprint arXiv:2306.13029.
[33] Belarbi, O., Spyridopoulos, T., Anthi, E., Mavromatis, I., Carnelli, P., & Khan, A. (2023). Federated Deep Learning for Intrusion Detection in IoT Networks. In CEUR Workshop Proc (Vol. 3125, pp. 85-99).
[34] Campos, E.M., Saura, P.F., González-Vidal, A., Ramos, J.L., Bernabé, J.B., Baldini, G., & Gómez-Skarmeta, A.F. (2021). Evaluating Federated Learning for Intrusion Detection in Internet of Things: Review and Challenges. ArXiv, abs/2108.00974
[35] Ferrag, M.A., Friha, O., Maglaras, L., Janicke, H., & Shu, L. (2021). Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis. IEEE Access, PP, 1-1
[36] Alazab, M., Rm, S.P., M, P., Maddikunta, P.K., Gadekallu, T.R., & Pham, V.Q. (2022). Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Transactions on Industrial Informatics, 18, 3501-3509
[37] Chatterjee, S., & Hanawal, M.K. (2021). Federated Learning for Intrusion Detection in IoT Security: A Hybrid Ensemble Approach. ArXiv, abs/2106.15349.
[38] Ruzafa-Alcazar, P., Fernandez-Saura, P., Marmol-Campos, E., González-Vidal, A., Hernández-Ramos, J.L., Bernal-Bernabe, J., & Skarmeta, A.F. (2023). Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT. IEEE Transactions on Industrial Informatics, 19, 1145-1154
[39] Alazab, A., Khraisat, A., Singh, S., Jan, T., & Alazab, M. (2023). Enhancing Privacy-Preserving Intrusion Detection through Federated Learning. Electronics
[40] Al-Marri, N.A., Ciftler, B.S., & Abdallah, M.M. (2020). Federated Mimic Learning for Privacy Preserving Intrusion Detection. 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 1-6.
[41] Yang, W., Liu, B., Lu, C., & Yu, N. (2020). Privacy Preserving on Updated Parameters in Federated Learning. Proceedings of the ACM Turing Celebration Conference – China
[42] Zhao, X., Wang, L., Wang, L., & Lu, Z. (2022). A Privacy-Enhanced Federated Learning Scheme with Identity Protection. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 1188-1195.
[43] Elhussein, A., & Gursoy, G. (2023). Privacy-preserving patient clustering for personalized federated learning. arXiv preprint arXiv:2307.08847.
[44] Lingjie, Zhang., Hai, Zhang. (2023). Privacy-Preserving Federated Learning on Lattice Quantization. International Journal of Wavelets, Multiresolution and Information Processing, doi: 10.1142/s0219691323500200
[45] Ruzafa-Alcázar, P., Fernández-Saura, P., Mármol-Campos, E., González-Vidal, A., Hernández-Ramos, J. L., Bernal-Bernabe, J., & Skarmeta, A. F. (2021). Intrusion detection based on privacy-preserving federated learning for the industrial IoT. IEEE Transactions on Industrial Informatics, 19(2), 1145-1154.
[46] Yongfei, Liu., Guangjun, Wu., Wenyuan, Zhang., Jun, Li. (2023). Federated Learning-Based Intrusion Detection on Non-IID Data. Lecture Notes in Computer Science, 313-329. doi: 10.1007/978-3-031-22677-9_17
[47] Federated Deep Learning for Intrusion Detection in IoT Networks." null (2023). doi: 10.48550/arxiv.2306.02715
[48] Federated Learning for IoMT Applications: A Standardization and Benchmarking Framework of Intrusion Detection Systems." IEEE Journal of Biomedical and Health Informatics,undefined(2023).doi: 0.1109/jbhi.2022.3167256.
[49] Saadat, H., Aboumadi, A., Mohamed, A., Erbad, A., & Guizani, M. (2021). Hierarchical Federated Learning for Collaborative IDS in IoT Applications. 2021 10th Mediterranean Conference on Embedded Computing (MECO), 1-6.
[50] Lazzarini, Riccardo, Huaglory Tianfield, and Vassilis Charissis. "Federated Learning for IoT Intrusion Detection." AI 4.3 (2023): 509-530
[51] Tong, Q., Liang, G., & Bi, J. (2020). Effective Federated Adaptive Gradient Methods with Non-IID Decentralized Data. ArXiv, abs/2009.06557.
[52] Campos, E.M., Saura, P.F., González-Vidal, A., Ramos, J.L., Bernabé, J.B., Baldini, G., & Gómez-Skarmeta, A.F. (2021). Evaluating Federated Learning for Intrusion Detection in Internet of Things: Review and Challenges. ArXiv, abs/2108.00974.
[53] Kongyang, Chen., Xiaoxue, Zhang., Xiuhua, Zhou., Yatie, Xiao., Lei, Zhou. (2023). Privacy preserving federated learning for full heterogeneity.. Isa Transactions, doi: 10.1016/j.isatra.2023.04.020
[54] David, A., Bierbrauer., Nathaniel, D., Bastian. (2023). Data-efficient, federated learning for raw network traffic detection. 12538:125380Y-125380Y. doi: 10.1117/12.2663092
[55] Federated Learning for IoMT Applications: A Standardization and Benchmarking Framework of Intrusion Detection Systems." IEEE Journal of Biomedical and Health Informatics, undefined (2023). doi: 10.1109/jbhi.2022.3167256
[56] Md, Mamunur, Rashid., Shahriar, Usman, Khan., Fariha, Eusufzai., Md., Azharuddin, Redwan., Saifur, Rahman, Sabuj., Mahmoud, Elsharief. (2023). A Federated Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of Things Networks. Network, doi: 10.3390/network3010008
[57] Marulli, F., Verde, L., Marrone, S., Barone, R., & Biase, M.S. (2021). Evaluating Efficiency and Effectiveness of Federated Learning Approaches in Knowledge Extraction Tasks. 2021 International Joint Conference on Neural Networks (IJCNN), 1-6.
[58] Viktor, Valadi., Xinchi, Qiu., Pedro, Gusmão., Nicholas, D., Lane., Mina, Alibeigi. (2023). FedVal: Different good or different bad in federated learning. arXiv.org, doi: 10.48550/arXiv.2306.04040
[59] Wenjie, Song., Tongjiang, Yan. (2023). Federated Learning Framework for Blockchain based on Second-Order Precision. doi: 10.1109/BigComp57234.2023.00054
[60] Meng, Wang., Kai-An, Yu., Chunyang, Feng., Yiming, Qian., Kevin, Yingyin, Zou., Lianyu, Wang., Rick, Siow, Mong, Goh., Xinxing, Xu., Yong, Liu., Huazhu, Fu. (2023). TrFedDis: Trusted Federated Disentangling Network for Non-IID Domain Feature. arXiv.org, doi: 10.48550/arXiv.2301.12798
[61] Attota Dinesh Chowdary, et al An ensemble multi-view federated learning intrusion detection for IoT IEEE Access 9 (2021): 117734-117745.
[62] Zhao, R., Wang, Y., Xue, Z., Ohtsuki, T., Adebisi, B., & Gui, G. (2022). Semi-supervised federated learning based intrusion detection method for internet of things. IEEE Internet of Things Journal.
[63] Haolan, Liang., Dongqi, Liu., Xiangjun, Zeng., Chunxiao, Ye. (2023). An Intrusion Detection Method for Advanced Metering Infrastructure System Based on Federated Learning. Journal of modern power systems and clean energy, 11(3):927-937. doi: 10.35833/mpce.2021.000279
[64] Zhang, J., Luo, C., Carpenter, M., & Min, G. (2022). Federated Learning for Distributed IIoT Intrusion Detection using Transfer Approaches. IEEE Transactions on Industrial Informatics.
[65] Jiazhen, Zhang., Chunbo, Luo., Marcus, Carpenter., Geyong, Min. (2023). Federated Learning for Distributed IIoT Intrusion Detection Using Transfer Approaches. IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2022.3216575
[66] Othmane, Belarbi., Theodoros, Spyridopoulos., Eirini, Anthi., Ioannis, Mavromatis., Pietro, Edoardo, Carnelli., Aftab, Khan. (2023). Federated Deep Learning for Intrusion Detection in IoT Networks. arXiv.org, doi: 10.48550/arXiv.2306.02715
[67] Peng, Li. (2023). FedSD: A New Federated Learning Structure Used in Non-iid Data. doi: 10.1109/icassp49357.2023.10095595
[68] Zhibo, Wang., Yuting, Huang., Mengkai, Song., Libing, Wu., Feng, Xue., Kui, Ren. (2023). Poisoning-Assisted Property Inference Attack Against Federated Learning. IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2022.3196646
[69] Gang, Yan., Hao, Wang., Xu, Yuan., Jian, Li. (2023). DeFL: Defending against Model Poisoning Attacks in Federated Learning via Critical Learning Periods Awareness. Proceedings of the ... AAAI Conference on Artificial Intelligence, doi: 10.1609/aaai.v37i9.26271
[70] Pretom, Roy, Ovi., Aryya, Gangopadhyay., Robert, F., Erbacher., C., Busart. (2023). Confident federated learning to tackle label flipped data poisoning attacks. doi: 10.1117/12.2663911
[71] Léo, Lavaur., Marc-Oliver, Pahl., Yann, Busnel., Fabien, Autrel. (2022). The Evolution of Federated Learning-Based Intrusion Detection and Mitigation: A Survey. IEEE Transactions on Network and Service Management, doi: 10.1109/TNSM.2022.3177512
[72] Wu, X., Huang, F., Hu, Z., & Huang, H. (2023, June). Faster adaptive federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 9, pp. 10379-10387).
[73] Mills, J., Hu, J., Min, G., Jin, R., Zheng, S., & Wang, J. (2022). Accelerating federated learning with a global biased optimiser. IEEE Transactions on Computers.
[74] Rahulamathavan, Y., Herath, C., Liu, X., Lambotharan, S., & Maple, C. (2023). FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users. arXiv preprint arXiv:2306.05112
[75] Wenhao, Mou., Chunlei, Fu., Yan, Lei., Chunqiang, Hu. (2021). A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation.. doi: 10.1007/978-3-030-86130-8_16
[76] Subedi, R., Gaire, R. R., Ali, S., Nguyen, A., Stoyanov, D., & Bhattarai, B. (2023). A Client-server Deep Federated Learning for Cross-domain Surgical Image Segmentation. arXiv preprint arXiv:2306.08720
[77] Huang, W., Liu, J., Li, T., Ji, S., Wang, D., & Huang, T. (2022). FedCKE: Cross-Domain Knowledge Graph Embedding in Federated Learning. IEEE Transactions on Big Data.
[78] Liu, S., & Xu, F. (2023, May). Adaptive federated learning aggregation strategies based on mobile edge computing. In Third International Conference on Machine Learning and Computer Application (ICMLCA 2022) (Vol. 12636, pp. 65-73). SPIE
[79] Selamnia, Aymene et al. “Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning.” GLOBECOM 2022 - 2022 IEEE Global Communications Conference (2022): 2080-2085
[80] Yu, Rong and Peichun Li. “Toward Resource-Efficient Federated Learning in Mobile Edge Computing.” IEEE Network 35 (2021): 148-155.